О группе с центром индекса больше двух

В работе [1] дано описание черниковских групп с конечными классами сопряженных элементов. Такие группы конечны над центром. Возник вопрос: может ли в группе с нетривиальным центром центр иметь индекс два? В этом случае факторгруппа по центру будет обладать элементами порядка два (инволюциями). В теории групп группы с инволюциями занимают особое положение (это, в частности, простые группы). Группы с инволюциями требуют особого рассмотрения. В работе установлено, что в группе с нетривиальным центром центр может иметь индекс превосходящий число два.

Год: 2014
Город: Астана
Категория: Математика
Скачать прикрепленный файл