Другие статьи

Цель нашей работы - изучение аминокислотного и минерального состава травы чертополоха поникшего
2010

Слово «этика» произошло от греческого «ethos», что в переводе означает обычай, нрав. Нравы и обычаи наших предков и составляли их нравственность, общепринятые нормы поведения.
2010

Артериальная гипертензия (АГ) является важнейшей медико-социальной проблемой. У 30% взрослого населения развитых стран мира определяется повышенный уровень артериального давления (АД) и у 12-15 % - наблюдается стойкая артериальная гипертензия
2010

Целью нашего исследования явилось определение эффективности применения препарата «Гинолакт» для лечения ВД у беременных.
2010

Целью нашего исследования явилось изучение эффективности и безопасности препарата лазолван 30мг у амбулаторных больных с ХОБЛ.
2010

Деформирующий остеоартроз (ДОА) в настоящее время является наиболее распространенным дегенеративно-дистрофическим заболеванием суставов, которым страдают не менее 20% населения земного шара.
2010

Целью работы явилась оценка анальгетической эффективности препарата Кетанов (кеторолак трометамин), у хирургических больных в послеоперационном периоде и возможности уменьшения использования наркотических анальгетиков.
2010

Для более объективного подтверждения мембранно-стабилизирующего влияния карбамезапина и ламиктала нами оценивались перекисная и механическая стойкости эритроцитов у больных эпилепсией
2010

Нами было проведено клинико-нейропсихологическое обследование 250 больных с ХИСФ (работающих в фосфорном производстве Каратау-Жамбылской биогеохимической провинции)
2010


C использованием разработанных алгоритмов и моделей был произведен анализ ситуации в системе здравоохранения биогеохимической провинции. Рассчитаны интегрированные показатели здоровья
2010

Специфические особенности Каратау-Жамбылской биогеохимической провинции связаны с производством фосфорных минеральных удобрений.
2010

Устойчивость системы линейных дифференциальных уравнений с периодическими коэффициентами

где Z(t) — фундаментальная матрица решений zj (t(j = 1,..., п), а C = C) — постоянная матрица.

В силу (1) и (2) матрица Z(t) удовлетворяет условиям Ż = F(t)Z, Z(0) = E.

Полагая в равенстве (3) t = 0, получим Z(ω) = C.

Таким образом, Z(t + ω) = Z(t)Z(ω)(4)

Матрица Z(ω) называется матрицей монодромии системы уравнений (1). Очевидно I Z(ω)∣ ≠ 0. Собственные значения матрицы Z(ω) называются мультипликаторами системы уравнений (1). Совокупность мультипликаторов называется спектром уравнения (1).

Итак, матрица монодромии есть значение в конце периода t= ω матрицы Z( ω) фундаментальной системы решений, определенной начальным условием zj(0) =ej , а под мультипликаторами понимаются корни уравнения det[z (ω) -λZ(0)] = 0 . Это уравнение называется характеристичным уравнением системы (1). [1]

Линейная однородная система уравнений (1) имеет нетривиальное решение с периодом ω в том и только в том случае, когда один из ее мультипликаторов равен единице.

Теорема Флоке. Фундаментальная матрица Z(t) допускает следующее представление: Z(t) = F(t)eAt, где F(t) - периодическая матрица с периодом ωА - постоянная матрица.

Рассмотрим неоднородную линейную систему дифференциальных уравнений

(5)

где F(t) — непрерывная периодическая матрица с периодом ω, g(t) — непрерывная периодическая вектор-функция с периодом ω. Нас будут интересовать периодические решения этой системы уравнений с периодом ω.

Теорема. Пусть однородная система уравнений (1) (соответствующая неоднородной системе (5)) не имеет нетривиальных периодических решений с периодом ω (то есть все ее мультипликаторы отличны от единицы). Тогда система уравнений (5) имеет единственное периодическое решение с периодом ω. [1]

Теперь рассмотрим пример на применение некоторых теоретических сведений и теоремы рассмотренной в докладе.

Пример. Показать, что линейное уравнение

второго порядка x + a х = f (t) (-∞<t <+),

где f(t) — непрерывная периодическая функция с периодом ω, имеет единственное периодическое решение с периодом ω, если

а ≠ (к = 0, ± 1, ±2, ...)

Решение.

Сведем дифференциальное уравнение к системе и применим теорему.

195

Устойчивость систем линейных дифференциальных уравнений с периодическими коэффициентами является одним из направлений современной теории устойчивости, на сегодняшний день это направление развивается. В данной работе приведены основные сведения устойчивости систем линейных дифференциальных уравнений с периодическими коэффициентами.

Литература

  1. Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. -М. , 1954.-С.525.
  2. Демидович Б. П. Лекции по математической теории устойчивости. – М., 1967.-С.486.
  3. Беллман Р. Теория устойчивости дифференциальных уравнений. – М.: ИЛ, 1954. – 420 с.

Разделы знаний

Архитектура

Научные статьи по Архитектуре

Биология

Научные статьи по биологии 

Военное дело

Научные статьи по военному делу

Востоковедение

Научные статьи по востоковедению

География

Научные статьи по географии

Журналистика

Научные статьи по журналистике

Инженерное дело

Научные статьи по инженерному делу

Информатика

Научные статьи по информатике

История

Научные статьи по истории, историографии, источниковедению, международным отношениям и пр.

Культурология

Научные статьи по культурологии

Литература

Литература. Литературоведение. Анализ произведений русской, казахской и зарубежной литературы. В данном разделе вы можете найти анализ рассказов Мухтара Ауэзова, описание творческой деятельности Уильяма Шекспира, анализ взглядов исследователей детского фольклора.  

Математика

Научные статьи о математике

Медицина

Научные статьи о медицине Казахстана

Международные отношения

Научные статьи посвященные международным отношениям

Педагогика

Научные статьи по педагогике, воспитанию, образованию

Политика

Научные статьи посвященные политике

Политология

Научные статьи по дисциплине Политология опубликованные в Казахстанских научных журналах

Психология

В разделе "Психология" вы найдете публикации, статьи и доклады по научной и практической психологии, опубликованные в научных журналах и сборниках статей Казахстана. В своих работах авторы делают обзоры теорий различных психологических направлений и школ, описывают результаты исследований, приводят примеры методик и техник диагностики, а также дают свои рекомендации в различных вопросах психологии человека. Этот раздел подойдет для тех, кто интересуется последними исследованиями в области научной психологии. Здесь вы найдете материалы по психологии личности, психологии разивития, социальной и возрастной психологии и другим отраслям психологии.  

Религиоведение

Научные статьи по дисциплине Религиоведение опубликованные в Казахстанских научных журналах

Сельское хозяйство

Научные статьи по дисциплине Сельское хозяйство опубликованные в Казахстанских научных журналах

Социология

Научные статьи по дисциплине Социология опубликованные в Казахстанских научных журналах

Технические науки

Научные статьи по техническим наукам опубликованные в Казахстанских научных журналах

Физика

Научные статьи по дисциплине Физика опубликованные в Казахстанских научных журналах

Физическая культура

Научные статьи по дисциплине Физическая культура опубликованные в Казахстанских научных журналах

Филология

Научные статьи по дисциплине Филология опубликованные в Казахстанских научных журналах

Философия

Научные статьи по дисциплине Философия опубликованные в Казахстанских научных журналах

Химия

Научные статьи по дисциплине Химия опубликованные в Казахстанских научных журналах

Экология

Данный раздел посвящен экологии человека. Здесь вы найдете статьи и доклады об экологических проблемах в Казахстане, охране природы и защите окружающей среды, опубликованные в научных журналах и сборниках статей Казахстана. Авторы рассматривают такие вопросы экологии, как последствия испытаний на Чернобыльском и Семипалатинском полигонах, "зеленая экономика", экологическая безопасность продуктов питания, питьевая вода и природные ресурсы Казахстана. Раздел будет полезен тем, кто интересуется современным состоянием экологии Казахстана, а также последними разработками ученых в данном направлении науки.  

Экономика

Научные статьи по экономике, менеджменту, маркетингу, бухгалтерскому учету, аудиту, оценке недвижимости и пр.

Этнология

Научные статьи по Этнологии опубликованные в Казахстане

Юриспруденция

Раздел посвящен государству и праву, юридической науке, современным проблемам международного права, обзору действующих законов Республики Казахстан Здесь опубликованы статьи из научных журналов и сборников по следующим темам: международное право, государственное право, уголовное право, гражданское право, а также основные тенденции развития национальной правовой системы.