Современное эволюционное мышление сложилось в XVIII и XIX вв. и неразрывно связано с великими именами Канта, Гегеля, Маркса, Дарвина и Клаузиуса. И. Кант предпринял попытку объяснить происхождение мира исходя из физических законов. То, что Кант с немалой претензией сделал для исследования космической эволюции, Г. Гегель совершил для открытия общих законов диалектики. К. Марксу мы обязаны знанием некоторых законов общественной эволюции, а Ч. Дарвину – обоснованной теорией происхождения видов. Дарвин сформулировал принцип отбора и продемонстрировал его значение для эволюции в биологии. Лингвист Шлейхер около 1850 г. совершенно независимо от Дарвина установил аналогичный принцип для развития естественных языков и тем самым заложил основы теории эволюции языковой коммуникации. Наконец, Клаузиус сформулировал важнейший закон процессов эволюции второе начало термодинамики. К Клаузиусу восходят первые соображения относительно физически обоснованных моделей космического развития. Сколь ни сомнительным может казаться с современной точки зрения вывод Клаузиуса о "тепловой смерти Вселенной", именно этот вывод послужил толчком к развитию теоретической мысли, которая в работах Эйнштейна, Фридмана и Гамова привела к ныне широко принятой релятивистско-термодинамической модели эволюции. И, наконец, современная теория эволюции, основанная на концепции самоорганизации, рассматривает процесс эволюции как неограниченную последовательность процессов самоорганизации систем.
Эволюционная теория Дарвина послужила мощным толчком для развертывания исследований о механизмах развития различных природных и социальных систем. Если физические и химические методы исследования многое дали для анализа структуры и функционирования живых систем, то эволюционная концепция биологии заставила физиков и химиков поновому взглянуть на объекты своих исследований и природу в целом. В самом деле, если в теории Дарвина эволюция приводила к совершенствованию и усложнению живых систем в результате их адаптации к изменяющимся условиям среды, то в классической физике она связывалась с дезорганизацией и разрушением системы. Такое
представление вытекало из второго начала термодинамики, согласно которому закрытая система постепенно эволюционирует в сторону беспорядка, дезорганизации и увеличению энтропии. Понятие энтропии характеризует ту часть полной энергии системы, которая не может быть использована для производства работы. Поэтому в отличие от свободной энергии она представляет собой деградированную, отработанную энергию. Если обозначить свободную энергию F, энтропию — S, то полная энергия системы:
Согласно второму закону термодинамики, энтропия в замкнутой системе постоянно возрастает и, в конечном счете, стремится к своему максимальному значению. Следовательно, по степени возрастания энтропии можно судить об эволюции замкнутой системы, а тем самым и о времени ее изменения. Немецкий ученый Л. Больцман стал интерпретировать энтропию как меру беспорядка в системе. Таким образом, второй закон можно было теперь сформулировать так: замкнутая система, предоставленная самой себе, стремится к достижению наиболее вероятного состояния, заключающегося в ее максимальной дезорганизации. К такому равновесному состоянию в соответствии со вторым началом термодинамики приходят все закрытые системы, т.е. системы, не получающие энергии извне. Противоположные по типу системы носят название открытых.
Резкое противоречие между биологической и физической эволюцией удалось разрешить только после того, когда физика обратилась к понятию открытой системы, т.е. системы, которая обменивается с окружающей средой веществом, энергией и информацией. При определенных условиях в открытых системах могут возникнуть процессы самоорганизации в результате получения новой энергии и вещества извне и диссипации, или рассеяния, использованной в системе энергии. Таким образом, было установлено, что ключ к пониманию процессов самоорганизации содержится в исследовании процессов взаимодействия системы с окружающей средой.
Процессы самоорганизации исследовали разные ученые в разных направлениях естествознания. В 1951 г. Б.П. Белоусов описал самоорганизующуюся химическую реакцию, в которой возникают самоподдерживающиеся колебания во времени. Более подробно такого рода реакции были исследованы группой ученых под руководством А.М. Жаботинского. В этих реакциях малоновая кислота как органическое вещество окисляется броматами в растворе серной кислоты в присутствии определенного катализатора. В результате реакций раствор, в котором находятся эти вещества, начинает периодически менять свою окраску с голубого на красный, так что этот самоорганизующийся процесс можно рассматривать как своеобразные "химические часы". В дальнейшем было обнаружено возникновение не только периодических структур во времени, но и в пространстве или одновременно в пространстве и во времени. Механизмы таких реакций весьма сложны.
Видный теоретик самоорганизации И.Р. Пригожин пришел к своим идеям из анализа специфических химических реакций, которые приводят к образованию определенных пространственных структур с течением времени при изменении концентрации реагирующих веществ. Вместе со своими сотрудниками он построил математическую модель таких реакций. Теоретической основой модели стала нелинейная термодинамика, изучающая процессы, происходящие в нелинейных неравновесных системах под воздействием флуктуаций. Если такая система удалена от точки термодинамического равновесия, то возникающие в ней флуктуации в результате взаимодействия со средой будут усиливаться и в конце концов приведут к разрушению прежнего порядка или структуры, а тем самым и к возникновению новой системы. Структура и системы, возникающие при этом, И.Р. Пригожин назвал диссипативными, поскольку они образуются за счет диссипации, или рассеяния, энергии, использованной системой, и получения из окружающей среды новой, свежей энергии. За исследования по термодинамике диссипативных структур И.Р. Пригожину была присуждена Нобелевская премия.
Другой видный теоретик самоорганизации немецкий ученый М. Эйген доказал, что открытый Ч. Дарвиным принцип отбора продолжает сохранять свое значение и на микроуровне. Поэтому он имел все основания утверждать, что генезис жизни есть результат процесса отбора, происходящего на молекулярном уровне. Он показал, что сложные органические структуры с адаптационными характеристиками возникают благодаря эволюционному процессу отбора, в котором адаптация оптимизируется самими структурами. Предпосылками осуществления такой самоорганизации макромолекул являются взаимодействие системы со средой или открытость для обмена веществом и энергией, автокатализ, мутации и естественный отбор. Таким образом, медленно, но неуклонно в разных направлениях науки формировалось убеждение, что во всех этих исследованиях существует единое концептуальное ядро, которое служит общей их основой. Оно и составляет парадигму исследования процессов самоорганизации.
Таким образом, эволюцию можно рассматривать как неограниченную последовательность процессов самоорганизации. Общая схема процесса эволюции при этом принципиально сводится к следующему (рис. 1):
Рис. 1. Процесс эволюции как неограниченная последовательность процессов самоорганизации
Относительно стабильное n-е состояние эволюции утрачивает устойчивость. В качестве причин, вызывающих потерю устойчивости, выступают временные изменения внутреннего состояния или наложенных краевых условий. Особенно характерной причиной эволюционной неустойчивости является внезапное появление новой модели движения, новой разновидности молекул в химии, нового вида в биологии. Этот новый элемент в рассматриваемой динамической системе приводит к потере устойчивости состояния системы, которое до появления нового элемента было устойчивым.
- Неустойчивость, обусловленная новым элементом в системе, запускает динамический процесс, который приводит к дальнейшей самоорганизации системы. Система порождает новые упорядоченные структуры.
- По завершении процесса самоорганизации эволюционная система переходит в эволюционное состояние (n+1). После этого n-го эволюционного цикла начинается новый (п+1)-й эволюционный цикл (рис. 2).
Рис 2. Самоорганизация в различных видах эволюции
Теория самоорганизации, возникшая на основе исследования простейших физико-химических систем, оказалась способной объяснить многие эволюционные процессы, происходящие в биологических, экологических и даже социально культурных системах. Но главное преимущество ее состоит в том, что новая парадигма помогает взглянуть на мир и составляющие ее системы с точки зрения их возникновения и развития без привлечения каких-либо мистических сил. Учение самоорганизации может раскрыть механизмы эволюции, происходящие от простейших систем живой природы до сложных форм эволюции в биологических, социально-экономических и культурно-исторических системах.
Несмотря на существенное отличие эволюции неживой природы от эволюции биологической, между ними существует также большое сходство и, можно даже сказать, глубокая аналогия. С этой точки зрения представляется интересным определение жизни, данное известным австрийским физиком Э. Шредингером: "Жизнь это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время. Средством, при помощи которого организм поддерживает себя на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), является энергия, получаемая организмом из окружающей среды с продуктами питания".
Многие видные ученые характеризуют также социальную эволюцию как продолжение биологической или генетической эволюции другими средствами. Некоторые даже считают культуру более мощным средством приспособления. Новейшая концепция эволюции, опирающаяся на парадигму самоорганизации, оказывается более адекватной и для анализа социальнокультурной эволюции.
Социальная эволюция, так же, как и эволюция природная, возникает в результате взаимодействия с окружающей средой. В природе адаптация к изменениям среды происходит путем естественного отбора, в результате которого побеждают в борьбе за существование и оставляют потомство наиболее приспособленные к условиям существования группы растений и животных. Таким образом, эволюция здесь происходит путем генетической передачи информации от родителей к потомкам.
У общества существуют свои методы и средства передачи приобретенного опыта, причем не только индивидуального, но и социального характера. Эти методы характеризуют как традиции. Традиции придают социальной эволюции более ускоренный характер по сравнению с эволюцией генетической, которая наблюдается в природе. Сюда относятся все способы передачи опыта, начиная от простейших навыков и правил поведения и кончая сложнейшими приемами профессиональной деятельности, накопленными знаниями и общечеловеческими нормами поведения. Действительно, социальная и культурная эволюция связана не с только с передачей индивидуального опыта, навыков, знаний и правил поведения и традиций в целом всех предшествующих поколений людей в той мере, в какой они зафиксированы и объективизированы в результате практической и интеллектуальной деятельности. Таким образом, самоорганизация выступает как источник эволюции систем и жизни, так как она служит началом процесса возникновения новых и более сложных структур в развитии системы.
ВЫВОДЫ
- При определенных неравновесных условиях в открытой системе за счет внутренних перестроек могут возникнуть упорядоченные структуры. Эту особенность системы назвали самоорганизацией, а сами структуры, возникающие в диссипативных системах при неравновесных необратимых процессах, Пригожин назвал диссипативными. Под влиянием действия крупномасштабных флуктуаций возникают коллективные формы движения, между которыми начинается конкуренция, происходит отбор устойчивых, возникают новые структуры.
- Устойчивые состояния не теряют устойчивости при флуктуациях параметров влияние флуктуаций погашается за счет внутренних процессов. Неустойчивые системы, наоборот, начинают усиливать флуктуации.
Г. Хакен выделил в спонтанном переходе к организации роль коллективных процессов, коллективного действия многих подсистем. Отсюда и название складывающейся концепции синергетика. Синергетика изучает механизмы взаимодействия в сложных отрытых системах с положительной обратной связью.
Это взаимодействие ведет к согласованному, кооперативному поведению подсистем и сопровождается образованием новых устойчивых структур и самоорганизацией системы.
Самоорганизация выступает как источник эволюции систем, так как она служит началом процесса возникновения качественно новых и более сложных структур в развитии системы. Образование упорядоченных структур происходит в открытых системах при достижении определенного порогового значения в далеком от равновесия состоянии. На микроуровне при самоорганизации происходит процесс расширения или увеличения флуктуаций вследствие увеличения неравновесности системы под воздействием среды. Переход скачком в новое состояние с потерей линейности законов называют бифуркацией. Этот процесс остается незаметным на макроуровне, пока изменения не достигнут некоторой критической точки, после которой спонтанно возникает новый порядок или структура.
В начале 60-х, в то самое время, когда Илья Пригожий осознал критическую важность нелинейности для описания самоорганизующихся систем, родственное открытие сделал и Герман Хакен в Германии, изучая физику недавно изобретенных лазеров. В лазере при определенных специальных условиях происходит переход от обычного света лампы, состоящего из некогерентной (неупорядоченной) смеси световых волн различных частот и фаз, к когерентному лазерному свету, состоящему из однородного непрерывного монохроматического излучения.
Высокая когерентность лазерного света достигается координацией эмиссии света от отдельных атомов в лазере. Хакен понял, что эта скоординированная эмиссия, ведущая к спонтанному возникновению когерентности, или порядка, является процессом самоорганизации и что для того, чтобы верно описать его, требуется нелинейная теория. «В те дни я много спорил с несколькими американскими теоретиками, вспоминает Хакен, которые тоже работали над лазерами, но в рамках линейной теории. Они не понимали, что в точке перехода происходит нечто качественно новое».
Когда был открыт лазерный феномен, его интерпретировали как процесс усиления, который Эйнштейн описал еще на заре квантовой теории. Атомы излучают свет, когда они «возбуждены», т. е. когда их электроны поднимаются на более высокие орбиты. Через некоторое время электроны спонтанно возвращаются на низшие орбиты и при этом излучают энергию в виде элементарных световых волн. Луч обычного света состоит из неупорядоченной смеси этих элементарных волн, излучаемых атомами.
При особых условиях, однако, проходящая световая волна может «стимулировать», или, как называл это Эйнштейн, «индуцировать», возбужденный атом так, что он, излучая энергию, усиливает световую волну. Эта усиленная волна, в свою очередь, может стимулировать другой атом к ее дальнейшему усилению, и в конце концов все это приводит к лавинообразному усилению. Этот результирующий феномен был назван усилением света через стимуляцию излучения, откуда возникла и английская аббревиатура ЛАЗЕР.
Недостаток этого представления заключался в том, что различные атомы в лазерном материале одновременно генерируют различные некогерентные между собой световые лавины. Тогда каким образом, спрашивал Хакен, эти неупорядоченные волны объединяются и формируют единую последовательность когерентных волн? Ответ был найден, когда Хакен понял, что лазер представляет собой систему множества частиц, далекую от теплового равновесия. Ее необходимо «накачивать» извне, чтобы возбудить атомы, которые затем излучают энергию. Таким образом, через эту систему проходит непрерывный поток энергии.
Интенсивно изучая этот феномен в 60-е годы, Хакен обнаружил несколько параллелей с другими далекими от равновесия системами; это навело его на мысль о том, что переход от нормального света к лазерному может служить примером процесса самоорганизации, типичного для далеких от равновесия систем.
Тогда Хакен ввел термин синергетика, чтобы выразить потребность в новой области систематического изучения процессов, в которых совместные действия отдельных частей, таких как атомы лазера, обусловливают согласованное поведение целого. В интервью, данном в 1985 году, Хакен пояснял: «В физике существует понятие «согласованные эффекты»; но оно применяется, главным образом, к системам, находящимся в тепловом равновесии... Я чувствовал, что должен ввести термин для согласованности в системах, далеких от теплового равновесия... Я хотел подчеркнуть, что нам требуется новая дисциплина для описания этих процессов... Итак, синергетику можно рассматривать как науку, имеющую дело, возможно не исключительно, с феноменом самоорганизации».
В 1970 г. Хакен опубликовал полную версию своей нелинейной лазерной теории в престижной немецкой физической энциклопедии «Handbuch der Physik». Рассматривая лазер как далекую от равновесия самоорганизующуюся систему, он показал, что она входит в лазерный режим, когда интенсивность внешней накачки достигает определенной критической величины. Благодаря специальному устройству зеркал, расположенных на противоположных концах лазерного резонатора, только свет, излучаемый в направлении, близком к лазерной оси, может оставаться в резонаторе в течение времени, достаточного для возникновения процесса усиления, в то время как другие последовательности волн устраняются.
Теория Хакена с очевидностью показывает, что, хотя лазеру требуется энергетическая подкачка извне, чтобы он оставался в состоянии, далеком от равновесия, координация эмиссий осуществляется самим лазерным светом: это процесс самоорганизации. Таким образом, Хакен независимо пришел к точному описанию феномена самоорганизации, подобного тому, который Пригожин назвал бы диссипативной структурой.
Предсказания лазерной теории были подтверждены с большой точностью, и благодаря новаторской работе Германа Хакена лазер стал важным инструментом в изучении самоорганизации. На торжественном симпозиуме, посвященном шестидесятилетию Хакена, его сотрудник Роберт Грэм весьма выразительно оценил его работу:
Великий вклад Хакена в науку состоит в том, что он понял, что лазеры являются не только исключительно важным технологическим инструментом, но и сами по себе представляют интереснейшие физические системы, что может научить нас многому... Лазеры занимают очень важную позицию между квантовым и классическим миром, и теория Хакена объясняет нам, как могут быть связаны между собой эти миры... Лазер можно рассматривать как перекресток между квантовой и классической физикой, между равновесными и неравновесными явлениями, между фазовыми переходами и самоорганизацией, а также между регулярной и хаотической динамикой. В то же время это система, которую мы понимаем как на микроскопическом квантовомеханическом уровне, так и на макроскопическом классическом. Это устойчивая основа для изучения общих концепций неравновесной физики.
ЛИТЕРАТУРА
- Пригожин И., Стенгерс И. Время, хаос, квант. – М.: «Прогресс», 1999. – 268 с.
- Хакен Г. Синергетика. – М.: Мир, 1980. – 404 с.
- Курдюмов С.П., Князева Е.Н. Законы эволюции и самоорганизации сложных систем. – М.: «Наука», 1994. – 236 с.
- Гегель Г.В.Ф. Философия религии. В 2-х томах. Т. 2. – М.: «Мысль», 1977. – 573 с.
- Николис Г., Пригожин И. Самоорганизация в неравновесных системах. – М.: «Мир», 1979. – 512 с.
- Николис Г., Пригожин И. Познание сложного. От диссипативных структур к упорядоченности через флуктуации. – М.: «Мир», 1990. –344 с.
- Шредингер Э. Что такое жизнь? С точки зрения физики. – М.: Атомиздат, 1972. – 87 с.