Действие радиоактивного загрязнения на природные популяции растений и животных бывшего Семипалатинского испытательного полигона

В статье обсуждено действие радиоактивного загрязнения на природные популяции растений и животных бывшего Семипалатинского испытательного полигона. Для решения комплекса задач данной работы исследования проводили на природных популяциях растений и животных бывшего Семипалатинского испытательного полигона. Объектами цитогенетических исследований служили семена дикорастущих видов растений: житняк (Agropyron cristatum L.), типчак (Festica valesiace Cand.), ковыль сарептский (Stipa sareptana Beck.) и полынь тонковатая (Artemisia gracilescens Krash.), мышевидные грызуны трех видов: Большой тушканчик (Allactaga major Kerr.), Тушканчик прыгун (Allactaga saltator Eversm.) и Краснощекий суслик (Citellus eritrogenus Brandt.). Отмечено, что в природных популяциях растений, произрастающих на радиоактивно-загрязненных участках бывшего СИП, обнаружена повышенная частота цитогенетических нарушений: превышение выхода индуцированных хромосомных мутаций по сравнению с контролем составило более 3 раз, в природных популяциях мышевидных грызунов уровень генетических нарушений в половых и соматических клетках животных значительно (от 2 до 9,2 раза) превысил контрольный уровень. 

В настоящее время особую актуальность приобретают проблемы генетических последствий ра­диоактивного загрязнения окружающей среды для природных популяций организмов. Это связано с реально существующими ситуациями облучения природных сообществ в местах проведения ядерных испытаний [1-4] и в зоне влияния уранодобывающих промышленных предприятий Республики Ка­захстан [5-8].

При рассмотрении эффектов действия радиации на живые организмы необходимо учитывать, что субъектом эволюционного процесса служит не особь, а популяция. Генетические свойства попу­ляции неизмеримо превосходят наследственные потенции отдельных особей. Основной особен­ностью действия радиации на живые организмы является ее способность вызывать глубокие измене­ния в наследственном материале, нарушающие нормальную организацию организма. Такие измене­ния, будучи переданными последующим поколениям, могут внести существенный вклад в микроэво­люционные процессы [9]. Причем всестороннее изучение влияния повышенного уровня ионизирую­щих излучений на популяции растений и животных является необходимым условием для решения вопроса об отдаленных генетических последствиях воздействия ионизирующих излучений на при­родные сообщества [10]. Полученные результаты при исследовании растений и животных позволяют косвенно оценить риск проявления дефектов у человека [11]. Изучение реакции популяции организ­мов, находящихся в естественной среде обитания, на хроническое действие ионизирующей радиации представляет несомненный интерес и в плане экологического нормирования содержания искусствен­ных радионуклидов во внешней среде. Такого рода нормативы наряду с радиационно-гигиениче-скими показателями важны при регламентации использования ядерной энергетики в мирных целях.

Материалы и методы исследования

Для решения комплекса задач данной работы исследования проводили на природных популяци­ях растений и животных бывшего Семипалатинского испытательного полигона (СИП).

Объектами цитогенетических исследований служили семена дикорастущих видов растений: житняк (Agropyron cristatum L.), типчак (Festica valesiace Cand.), ковыль сарептский (Stipa sareptana Beck.) и полынь тонковатая (Artemisia gracilescens Krash.), собранные на участках с разными уровня­ми радиоактивного загрязнения на территории урочища «Балапан». Мощность эквивалентной дозы гамма-излучений (МЭД) на участках сбора семян составляла 0,16-31,7 мкЗв/ч. Семена каждого из этих видов были собраны в отдельности на трех уровнях радиоактивного загрязнения территории: I — сильное радиоактивное загрязнение (МЭД 15-31,7 мкЗв/ч); II — среднее радиоактивное загряз­нение (МЭД 0,8-10 мкЗв/ч); III — слабое радиоактивное загрязнение (МЭД 0,15-0,30 мкЗв/ч). Для контроля (IV) семена исследуемых видов растений собраны за пределами территории полигона (пос. Чайковка) при МЭД в пределах 0,12-0,20 мкЗв/ч. В зависимости от объекта подбирали условие проращивания семян и способ фиксации и окрашивания меристемных корешков растений. Цитогене-тический анализ проводили общепринятыми методами [12]. При анализе учитывали такие аномалии, как хроматидные фрагменты (f) и мосты (m'), хромосомные фрагменты (/") и мосты (m"), а также от­ставшие хромосомы, крупные микроядра и несинхронность деления (g).

Наряду с растениями наиболее удобными тест-объектами для подобного рода исследований яв­ляются мышевидные грызуны, которые на протяжении всей жизни непосредственно контактируют с почвой и растениями, содержащими радионуклиды, выпавшие в результате ядерных испытаний. Анализ совокупности нарушений в половых и соматических клетках грызунов дает достоверную кар­тину состояния генетической структуры популяции. Объектом исследований служили мышевидные грызуны трех видов: Большой тушканчик (Allactaga major Kerr.), Тушканчик-прыгун (Allactaga saltator Eversm.) и Краснощекий суслик (Citellus eritrogenus Brandt.), постоянно обитающие на терри­тории площадки «Балапан», где МЭД гамма-излучений составляет 0,16-8,1 мкЗв/ч; на отвалах «Атомного озера» на площадке «Балапан» — МЭД гамма-излучений составляет 9,0-18,6 мкЗв/ч и выше. Контрольные животные отловлены за пределами площадки «Балапан» с фоновым уровнем ра­диоактивного загрязнения: МЭД гамма-излучений < 0,33 мкЗв/ч. В работе представлены результаты двух экспресс-методов учета генетических нарушений в половых и соматических клетках: подсчет аномальных головок спермиев (АГС) и микроядерный тест — цитогенетический анализ эритроцитов периферической крови у животных.

Анализ аномальных головок спермиев позволяет учесть генные мутации в половых клетках, от­ветственные за возникновение морфологически атипичных спермиев [13]. У самцов мышевидных грызунов после умерщвления вскрывали и выделяли гонады, отделяли каудальные части эпидидими-сы, помещали в физиологический раствор. Эпидидимисы измельчали и содержимое фильтровали че­рез капроновую сетку, в осадок добавляли 1 %-ный водный раствор эозин-Na и спустя 30 минут гото­вили мазки на предметном стекле, высушивали на воздухе, покрывали покровными стеклами с ка­надским бальзамом. От каждого самца приготовлено не менее 15 препаратов и проанализировано не менее 2000 спермиев. К аномальным спермиям отнесены спермы с деформированной акросомой, с различными нарушениями формы головок сперматозоида: а) бананообразной головкой; b) аморфной головкой; с) закрученный сам на себя; d) с двумя хвостами и прочие сложные изменения [14]. Под­робное описание классификации наблюдаемых типов аномальных головок спермиев приведены в ра­ботах W.R.Bruce, R.Furrerk, A.J.Wyrobek [15] и A.J.Wyrobek, W.R.Bruce [16].

Материалом для микроядерного анализа эритроцитов служила периферическая кровь животных, взятая из ушных вен мышевидных грызунов, отловленных на площадке «Балапан» с уровнем радио­активного загрязнения: МЭД гамма-излучений 0,46-3,10 мкЗв/ч; бета-излучение в пределах 28,20­270,01 част/(мин-см2), контрольные животные отловлены на участках с фоновым уровнем: МЭД гам­ма-излучений — 0,13-0,15 мкЗв/ч; бета-излучение < 12,0 част/(мин-см2). В экспериментах использо­ваны по 6 особей каждого вида животных. С каждого животного приготовлено не менее 15 препара­тов, а в каждом препарате проанализировано не менее 500 эритроцитов, отмечено число клеток с микроядрами.

Статистическая обработка полученных результатов произведена по общепринятым методам биометрии [17-18].

Результаты и обсуждение

Нами получены данные о частоте и спектре аберрантных анафазных клеток у исследованных ви­дов растений в зависимости от уровня радиоактивного загрязнения в местах их произрастания (табл. 1).

Сопоставление полученных данных свидетельствует о существовании определенной закономер­ности мутационной изменчивости в хронически облучаемых популяциях в зависимости от видового различия растений и уровня радиоактивного загрязнения территории. Повышенная частота генетиче­ских изменений обнаружена у трех видов: Stipa sareptana Beck, Agropyron cristatum L. и Festuca vale-siace Cand. Так, у Stipa sareptana Beck частота анафазных клеток с аберрациями хромосом на загряз­ненных радионуклидами участках составляет в пределах 6,51±0,90 % - 8,02±1,50 %, при контрольном варианте 1,20±0,60 %. У Agropyron cristatum L. и Festuca valesiace Cand. частота поврежденных ана­фаз при высоком уровне загрязнения составляла соответственно 6,00±1,05 % и 5,62±1,20 %, при среднем уровне загрязнения равнялась соответственно 3,94±0,92 % и 4,15±0,85 %, что означает до­стоверное превышение выхода индуцированных мутаций по сравнению с контролем более чем в 3 раза.

Частота и спектр хромосомных аберраций в митотических клетках корешков различных видов растений 

При анализе генетических последствий воздействия радиоактивного загрязнения на природные популяции растений следует учитывать и тот факт, что кроме мутагенного действия ионизирующие излучения в популяциях индуцируют также процессы адаптации, которые, возможно, являются ре­зультатом длительного отбора в облучаемой популяции радиорезистентных форм, возникших спон­танно или в результате хронического облучения. При этом возрастание радиоустойчивости сопрово­ждается снижением уровня индуцированных структурных мутаций хромосом, что ранее было пока­зано на примере отдельных травянистых растений, произрастающих в течение нескольких лет в усло­виях хронического облучения [19]. В наших исследованиях аналогичные результаты получены у по­пуляций Artemisia gracilescens, произрастающих на территории урочища «Балапан»: частота струк­турных мутаций хромосом, индуцированных у данного вида при разных уровнях радиоактивного за­грязнения, существенно не различалась и составляла 2,70±0,75 % и 2,84±1,20 %, при контрольном уровне — 0,74±0,18 %. В отношении указанных структурных повреждений хромосом облучаемой популяции растений можно допустить, что отдельная их часть, не связанная с потерями генетическо­го материала, передается потомству и накапливается в виде генетического груза, ослабляя популя­ции, хотя особо негативно не влияет на жизнеспособность популяции в обычных условиях, но может оказывать отрицательное влияние при резком ухудшении условий произрастания растений.

В таблице 2 представлены результаты исследований по частоте и спектру аномальных головок сперматозоидов мышевидных грызунов. Анализ данных показывает, что у самцов Allactaga major, отловленных на участках с фоновым уровнем загрязнения частота аномальных сперматозоидов со­ставляет 6,76±1,25 %, тогда как у самцов этого вида тушканчиков, отловленных на радиоактивно за­грязненных участках, обнаружено повышенное количество сперматозоидов — от 30,16±2,91 % до 51,53±5,05 %, что превышает контрольный уровень в 4,5-7,6 раза. Это большая величина, которая может вызвать опасения сохранения генофонда большого тушканчика на данной территории. Экспе­рименты, проведенные на самцах Allactaga saltator и Citellus erytrogenus, также показали значитель­ное повышение количества аномальных сперматозоидов у этих животных, постоянно обитающих на радиоактивно загрязненных участках урочища «Балапан». Превышение контрольного уровня состав­ляет соответственно 5,02-9,2 и 3,24-6,6 раза.

Частота аномальных спермиев у самцов мышевидных грызунов, обитающих на площадке «Балапан»

Анализ литературных источников по действию ионизирующих излучений на репродуктивную функцию самцов показал, что мужские половые клетки являются высоко радиочувствительными [20-21]. Показано, что хроническое облучение самцов разных видов животных в малых и средних дозах об­лучения оказывает угнетающее действие на гонады, выражающиеся снижением массы яичников, по­давлением в развитии потомства в последующих поколениях. В отдаленные сроки в гонадах возмож­но развитие опухолей, генетических повреждений и необратимых структурных нарушений [22].

Нарушения в сперматогенезе, приводящие к образованию атипичных сперматозоидов, обычно связывают с генетическими повреждениями при митотических и мейотических делениях мужских половых клеток: полиморфизм по морфологии сперматозоидов находится под полигенным контро­лем многочисленных идентифицированных аутосомных и связанных с полом генов. Кроме того, все мутагены, в том числе ионизирующее излучение, индуцирующие наследственные повреждения, уси­ливают атипичный сперматогенез и нарушения морфологии сперматозоидов у самцов, могут переда­ваться их сыновьям, т.е. наследоваться [11].


Результаты цитогенетического анализа эритроцитов периферической крови опытных и кон­трольных животных представлены на рисунке. Показано, что в эритроцитах Allactaga major, отлов­ленных на радиоактивно-загрязненных участках обследуемой территории, уровень цитогенетических нарушений составил 4,72±0,65%о, тогда как в контрольном варианте этот показатель равнялся 1,40±0,26%о. У Allactaga saltator и Citellus erytrogenus, обитающих на загрязненных участках урочища «Балапан», также обнаружено повышенное количество эритроцитов с микроядрами, равное соответ­ственно 3,15±0,71%о и 2,84±0,82%о, что превышает контрольный уровень в 2,1-2,7 раза.

Количество микроядер в эритроцитах мышевидных грызунов

Безусловно, исследованные нами популяции организмов являются поколениями растений и жи­вотных, испытавших острое радиационное воздействие в период проведения ядерных испытаний и в дальнейшем в течение многих поколений (более 40 лет) подвергавшихся хроническому облучению. Обнаруженные нами генетические эффекты свидетельствуют об усилении микроэволюционных про­цессов в природных сообществах под воздействием ионизирующих излучений, проявляющихся в по­вышенной частоте цитогенетических нарушений.

Выводы

  1. В природных популяциях растений, произрастающих на радиоактивно-загрязненных участках технической площадки «Балапан» бывшего СИП, обнаружена повышенная частота цитогенетических нарушений: превышение выхода индуцированных хромосомных мутаций по сравнению с контролем более чем в 3 раза.
  2. В природных популяциях мышевидных грызунов, обитающих на радиоактивно-загрязненных территориях урочища «Балапан» бывшего СИП, уровень генетических нарушений в половых и сома­тических клетках животных значительно (от 2 до 9,2 раза) превышает контрольный уровень.

 

 

Список литературы

  1. Дубасов Ю.В. Современная радиационная обстановка на бывшем Семипалатинском полигоне и вокруг него. Некото­рые контрольно-методические исследования 1994 г. // Радиохимия. — 1997. — Т. 39. — Вып. 1. — С. 80-88.
  2. Сейсебаев А.Т., Смагулов С.Г. и др. Современные проблемы радиоэкологии бывшего Семипалатинского испытатель­ного полигона. — Павлодар, 1997. — 21 с.
  3. Логачев В.А., Логачева Л.А., Бежина Л.Н. Оценка степени влияния на здоровье населения ядерных испытаний на Семипалатинском полигоне по результатам анализа архивных материалов // Семипалатинский испытательный полигон. Радиационное наследие и проблемы нераспространения: Материалы II междунар. науч.-практ. конф. — Курчатов, 6-8 сен­тября 2005 г. — Курчатов, 2005. — Т. 2. — С. 110-118.
  4. Субботин С.Б., Лукашенко С.Н., Бахтин Л.В. Характер и уровни радиоактивного загрязнения водной среды СИП // Семипалатинский испытательный полигон. Радиационное наследие и проблемы нераспространения: Материалы III между-нар. науч.-практ. конф. — Ин-т радиационной безопасности и экологии НЯЦ РК. 6-8 октября 2008 г. — Курчатов, —С. 34-36.
  5. K., Seisebaev A.T. Problems of the complex assessment of radiobioecological situation and Public Health in ura­nium-extraction regions of Kazakhstan // Радиационная биология, Радиоэкология. — 2002. — Т. 42. — № 6. — С. 750-753.
  6. Казымбет П.К., Белоног А.А. и др. Комплексное радиоэкологическое исследование уранодобывающих территорий и близлежащих населенных пунктов Северного Казахстана // Медико-биологические и экологические проблемы в уранодо-бывающих регионах: Материалы II междунар. науч.-практ. конф. // Астана медициналық журналы. Спецвыпуск. —2005. — № 3. — С. 61-65.
  7. Казымбет П.К., Бахтин М.М., Имашева Б.С. Радиационная обстановка некоторых уранодобывающих регионов Се­верного Казахстана // Вестник КазНУ. Сер. экологич. — 2006. — № 1. — С. 30-35.
  8. Бахтин М.М. Содержание и распределение естественных радионуклидов и тяжелых металлов в тканях рыб, оби­тающих в открытых водоемах вблизи уранодобывающих предприятий Акмолинской области // Вестник науки Казахского государственного агротехнического университета им.С.Сейфуллина. — Астана, 2007. — № 3. — С. 172-178.
  9. Дубинин Н.П. Общая генетика. — М.: Наука, 1976. — 572 с.
  10. Абрамов А. И., Шевченко В.А. Генетические последствия хронического действия ионизирующих излучений на попу­ляции // Радиационный мутагенез и его роль в эволюции и селекции. — М.: Наука, 1987. — С. 83-109.
  11. Шумный В.К., Дыгало Н.Н., Осадчук А.В. и др. Генетические эффекты радиационного и других антропогенных за­грязнений на животных и растения Алтая // Вестник научной программы «Семипалатинский полигон-Алтай». — 1994. —№ 3. — С. 48-62.
  12. Паушева З.П. Практикум по цитологии растений. — М.: Агроиздат, 1988. — 271 с.
  13. Рябоконь Н. И. Генетический мониторинг мышевидных грызунов из загрязненных радионуклидами районов Белару­си: Автореф. дис. ... канд. биол. наук. — Минск, 1999. — 22 с.
  14. Soares E.R., Sheriden W., Segall M. Increased frequencies of aberrant sperm as indicators of mutagenic damage in mice // Mutation Research. — 1979. — 64. — № 1. — Р. 27-35.
  15. Bruce W.R., Furrerk R., Wyrobek A.J. Abnormalities in the shape of murine sperm after testicular X-irradiation // Mut. Res.------ Vol. 23. — № 3. — Р. 381-390.
  16. Wyrobek A.J., Bruce W.R. Chemical induction of sperm abnormalities in mice // Proc. Nati. Acad. Sci. (MSA). — 1975. — 71. — № 11. — P. 4425-4429.
  17. Рокицкий П.Ф. Биологическая статистика. — Минск: Вышэйш. шк., 1967. — 328 с.
  18. Лакин Г.Ф. Биометрия. — М.: Высш. шк., 1990. — 352 с.
  19. Шевченко В.А. Интегральная оценка генетических последствий действия ионизирующих излучений // Радиационная биология. Радиоэкология. — 1997. — Т. 34. — Вып. 4. — С. 569-576.
  20. Верховская И.Н., Маелова К.И., Маелов В.И. Действие малых доз радиации и инкорпорированных естественно-радиоактивных элементов на сперматогенез полевок экономок в природных условиях // Радиобиология. — 1965. — Т. — Вып. 5. — С. 720-729.
  21. Кондратенко В.Г. Действие малых доз радиации на репродуктивную систему самцов млекопитающих // Радиацион­ная биология. Информационный бюллетень. — 1976. — Вып. 19. — С. 10-15.
  22. Лягинская А.М. Актуальные вопросы действия радиоактивных веществ на гонады // 1 Всесоюз. Радиобиологический съезд. Москва, 21-27 августа 1989 г.: Тезисы докл. — Пущино, 1989. — С. 967-968.
Фамилия автора: Н.Ж.Кадырова
Год: 2011
Город: Караганда
Категория: Биология
Яндекс.Метрика