Оценка рисков инвестиционных проектов

Все предприятия в той или иной степени связаны с инвестиционной деятельностью. При­нятие решений по инвестиционным проектам осложняется различными факторами: вид ин­вестиций, стоимость инвестиционного проекта, множественность доступных проектов, огра­ниченность финансовых ресурсов, доступных для инвестирования, риск, связанный с приня­тием того или иного решения. Но, анализируя эффективность тех или иных инвестиционных проектов, часто приходится сталкиваться с тем, что рассматриваемые при их оценке пото­ки денежных средств (расходы и доходы) относятся к будущим периодам и носят прог­нозный характер. Неопределенность будущих результатов обусловлена влиянием как мно­жества экономических факторов (колебания ры­ночной конъюнктуры, цен, валютных курсов, уровня инфляции и т.п.), не зависящих от уси­лий инвесторов, так и достаточного числа не­экономических факторов (климатические и при­родные условия, политические отношения и т.д.), которые не всегда поддаются точной оценке.

Неопределенность прогнозируемых резуль­татов приводит к возникновению риска того, что цели, поставленные в проекте, могут быть не достигнуты полностью или частично.

В настоящее время существует большое число различных определений самих понятий «риск» и «неопределенность».

В экономической практике обычно не делают различия между риском и неопределенностью. При этом под термином «риск» понимают неко­торую возможную потерю, вызванную наступле­нием случайных неблагоприятных событий [1].

В ряде случаев под рискованностью инвес­тиционного проекта понимается возможность отклонения будущих денежных потоков по проекту от ожидаемого потока. Чем больше отклонение, тем более рискованным считается проект [2].

Однако еще в первом в экономике научном определении риска Ф. Найтом было предложено различать понятия «риск» и «неопределенность».

Риск имеет место тогда, когда некоторое действие может привести к нескольким взаи­моисключающим исходам с известным распре­делением их вероятностей. Если же такое распределение неизвестно, то соответствующая ситуация рассматривается как неопределенность [3; 4].

В настоящее время многие авторы определяют риск как производную от факторов неопределенности [2; 5; 6; 7]. При этом под не­определенностью понимается неполнота или не­точность информации об условиях реализации проекта, в том числе о связанных с ними затра­тах и результатах. Неопределенность, связанная с возможностью возникновения в ходе реализа­ции проекта неблагоприятных ситуаций и по­следствий, характеризуется понятием риска.

Альтернативной является трактовка риска как возможности любых (позитивных или негативных) отклонений показателей от предус­мотренных проектом их средних значений [8].

В вопросе об оценке риска инвестиционного проекта также нет методологической одно­значности. Хотя большинство авторов, зани­мающихся вопросами инвестирования, обычно выделяют два основных подхода (качественный и количественный), тем не менее имеются существенные расхождения при рассмотрении конкретных методов оценки.

Главная задача качественного подхода состоит в выявлении и идентификации возможных видов рисков рассматриваемого инвестиционного проекта, а также в определении и описании источников и факторов, влияющих на данный вид риска. Кроме того, качественный анализ предполагает описание возможного ущерба, его стоимостной оценки и мер по снижению или предотвращению риска (диверсификация, страхование рисков, создание резервов и т. д.).

Качественный подход, не позволяющий определить численную величину риска инвес­тиционного проекта, является основой для проведения дальнейших исследований с помощью количественных методов, широко использующих математический аппарат теории вероятностей, математической статистики, теории исследования операций.

Основная задача количественного подхода заключается в численном измерении влияния факторов риска на поведение критериев эффективности инвестиционного проекта.

Среди качественных методов оценки инвестиционного риска наиболее часто используются следующие:

  • -  анализ уместности затрат;
  • -  метод аналогий;
  • -  метод экспертных оценок.

Основой анализа уместности затрат [6; 9] вы­ступает предположение о том, что перерасход средств может быть вызван одним или несколь­кими из следующих факторов:

  • -  изначальная недооценка стоимости проекта в целом или его отдельных фаз и составляющих;
  • -  изменение границ проектирования, обуслов­ленное непредвиденными обстоятельствами;
  • -  отличие производительности машин и меха­низмов от предусмотренной проектом;
  • -  увеличение стоимости проекта в сравнении с первоначальной вследствие инфляции или из­менения налогового законодательства.

В процессе анализа, исходя из условий конкретного инвестиционного проекта, происходит детализация указанных факторов и составляется контрольный перечень возможного повышения затрат по статьям для каждого варианта проекта или его элементов.

Процесс финансирования разбивается на стадии, связанные с фазами реализации проекта. При этом необходимо также учитывать и до­полнительную информацию о проекте, посту­пающую по мере его разработки. Поэтапное выделение средств позволяет инвестору при первых признаках того, что риск вложения рас­тет, или прекратить финансирование проекта, или же начать поиск мер, обеспечивающих снижение затрат.

Не менее распространенным при проведении качественной оценки инвестиционного риска является метод аналогий [6; 8; 9]. Суть его за­ключается в анализе всех имеющихся данных по не менее рискованным аналогичным проектам, изучении последствий воздействия на них не­благоприятных факторов с целью определения потенциального риска при реализации нового проекта.

При этом источником информации могут служить регулярно публикуемые западными страховыми компаниями рейтинги надежности проектных, подрядных, инвестиционных и прочих компаний, анализы тенденций изменения спроса на конкретную продукцию, цен на сырье, топливо, землю и т. д.

Основная сложность при использовании данного метода состоит в правильном подборе аналога, т. к. отсутствуют формальные критерии, позволяющие установить степень аналогичнос­ти ситуаций. Но даже если удается подобрать аналог, то, как правило, очень трудно сфор­мулировать предпосылки для анализа, исчер­пывающий и реалистический набор возможных сценариев срыва проекта. Причина состоит в том, что большинство подобных ситуаций каче­ственно различны, возникающие осложнения нередко наслаиваются друг на друга, а их эффект проявляется как результат сложного взаимодей­ствия.

Также крайне затруднительно оценить степень точности, с которой уровень риска аналогичного проекта можно принять за риск рассматриваемого. Более того, отсутствуют методические разработки, подробно описы­вающие логику и детали подобной процедуры оценивания риска [9].

Все вышесказанное свидетельствует о том, что метод анализа уместности затрат и метод аналогий пригодны скорее для описания возможных рисковых ситуации, нежели для получения более или менее точной оценки риска инвестиционного проекта.

Метод экспертных оценок [6; 7; 9] базируется на опыте экспертов в вопросах управления инвестиционными проектами. Анализ начи­нается с составления исчерпывающего перечня рисков по всем стадиям проекта.

Каждому эксперту, работающему отдельно, предоставляется перечень первичных рисков в виде опросных листов и предлагается оценить вероятность их наступления, руководствуясь специальной системой оценок. В том случае, если между мнениями экспертов будут обнаружены большие расхождения, они обсуждаются всеми экспертами для выработки более согласованной позиции. В целях получения более объективной оценки специалисты, проводящие экспертизу, должны обладать полным спектром информации об оцениваемом проекте.

После определения вероятностей по прос­тым рискам возникает вопрос о выборе метода сведения разнообразных показателей к единой интегральной оценке. В качестве такого метода обычно используется один из традиционных методов получения рейтинговых показателей, например, взвешивание. Этот метод предпола­гает определение весовых коэффициентов, с ко­торыми каждый простой риск входит в общий риск проекта. При этом нет никакой необхо­димости использовать для каждой группы рисков единую систему весов, единообразный подход должен соблюдаться только внутри каждой отдельно взятой группы. Важно лишь, чтобы соблюдались такие общие требования, как неотрицательность весовых коэффициентов и приравнивание их суммы к единице.

Наибольшего внимания заслуживает подход, предполагающий ранжирование отдельных рис­ков по степени приоритетности и определение весовых коэффициентов k в соответствии со значимостью этих рисков. Так, максимальное значение весового коэффициента присваивается рискам, имеющим в сложившейся ситуации первостепенное значение, минимальное n k-рискам последнего ранга. Риски с равной зна­чимостью получают одинаковые весовые коэф­фициенты. Определяется также значение соот­ношения между весовыми коэффициентами первого и последнего рангов

соотношения между весовыми коэффициентами первого и последнего рангов

В качестве способа взвешивания исполь­зуется расчет средней арифметической (веса, соответствующие соседним рангам, отличаются на одну и ту же величину) или средней гео­метрической (веса, соответствующие соседним рангам, различаются в одинаковое число раз).

Расстояние между соседними рангами можно исчислить по формуле (для средней арифмети­ческой):

 Расстояние между соседними рангами(2).

Весовой коэффициент отдельного риска с рангом m составляет нежелательна ситуация с резкими изменениями этих показателей, ведь это означает угрозу утери контроля. Чем меньше отклонение показателей от среднего ожидаемого значения, тем больше стабильность рыночной обстановки.

Именно поэтому наибольшее распростране­ние при оценке инвестиционного риска получил статистический метод, основанный на методах математической статистики [3; 7; 9].

Расчет среднего ожидаемого значения осуще­ствляется по формуле средней арифметической взвешенной:

Весовой коэффициент отдельного риска с рангом m

Если простые риски не ранжируются по степени приоритетности, то они соответственно, имеют весовые коэффициенты весовые коэффициенты

Основная проблема, возникающая при ис­пользовании метода экспертных оценок, связана с объективностью и точностью получаемых резуль­татов. Это связано с такими факторами, как нека­чественный подбор экспертов, возможность груп­пового обсуждения, доминирование какого-либо мнения (мнения «авторитетного лидера») и т.д.

Наибольшее распространение при оценке риска инвестиционных проектов (особенно производственных инвестиций) получили такие количественные методы, как:

  • -  статистический метод;
  • -  анализ чувствительности (метод вариации параметров);
  • -  метод проверки устойчивости (расчета кри­тических точек);
  • -  метод сценариев (метод формализованного описания неопределенностей);
  • -  имитационное моделирование (метод стати­стических испытаний, метод Монте-Карло);
  • -  метод корректировки ставки дисконтирова­ния.

Часто производственная деятельность пред­приятий планируется по средним показателям параметров, которые заранее не известны достоверно (например, прибыль) и могут ме­няться случайным образом. При этом крайне нежелательна ситуация с резкими изменениями этих показателей, ведь это означает угрозу утери контроля. Чем меньше отклонение показателей от среднего ожидаемого значения, тем больше стабильность рыночной обстановки. Именно поэтому наибольшее распространение при оценке инвестиционного риска получил статистический метод, основанный на методах математической статистики [3; 7; 9].

Расчет среднего ожидаемого значения осуществляется по формуле средней арифметической взвешенной:
формула средней арифметической взвешенной
где j - ожидаемое значение для каждого случая; n - число случаев наблюдения (частота).

Среднее ожидаемое значение представляет собой обобщенную количественную характерис­тику, и поэтому не позволяет принять решение впользу какого-либо варианта инвестирования.

Для принятия окончательного решения необходимо определить меру колеблемости воз­можного результата. Колеблемость представляет собой степень отклонения ожидаемого значения от среднего. Для ее оценки на практике обычно применяют два близко связанных критерия -дисперсию и сред нее квадратичное отклонение.

Дисперсия есть средневзвешенное значение квадратов отклонений действительных резуль­татов от средних ожидаемых:

Дисперсия

Среднее квадратичное отклонен6е опреде­ляется по формуле:

Среднее квадратичное отклонение

Среднее квадратичное отклонение является именованной величиной и указывается в тех же единицах, в каких измеряется варьирующий признак. Дисперсия и среднее квадратичное отклонение являются мерами абсолютной колеблемости.

Для анализа результатов и затрат, предус­матриваемых инвестиционным проектом, как правило, используют коэффициент вариации. Он представляет собой отношение среднего квадра­тичного отклонения к средней арифметической и показывает степень отклон)ния полученных значений:

 коэффициент вариации.

Коэффициент может изменяться от 0 до 100 %. Чем больше коэффициент, тем сильнее колеблемость. Принята следующая качественная оценка различных значений коэффициента ва­риации: до 10% - слабая колеблемость, 10-25% - умеренная, свыше 25 % - высокая.

При одинаковых значениях уровня ожидае­мого дохода более надежными являются вло­жения, которые характеризуются меньшим зна­чением среднеквадратического отклонения, по­казывающего колеблемость вероятности получе­ния ожидаемого дохода (вариацию доходности).

При различии значений средних уровней до­ходности по сравниваемым инвестиционным объектам выбор направления вложений исхо­дя из значений вариации невозможен, поэтому в данных случаях инвестиционное решение при­нимается на основе коэффициента вариации, оценивающего размер риска на величину доход­ности. Предпочтение отдается тем инвестицион­ным проектам, по которым значение коэффициента является более низким, что свидетельствует о лучшем соотношении дохода и риска.

Основным преимуществом статистического метода является то, что он позволяет оцени­вать риск не только рассматриваемого инвести­ционного проекта, но и всего предприятия в целом, анализируя динамику его доходов за определенный отрезок времени. Несмотря на несложность выполнения математических расчетов, для использования данного метода необходимо большое количество информации и данных за длительный период времени, что и является его основным недостатком.

Кроме того, описанные выше характеристики предполагается применять к нормальному закону распределения вероятностей. Он, действительно, широко используется при анализе рисков, т. к. его важнейшие свойства (симметричность распределения относительно средней, ничтожная вероятность больших отклонений случайной величины от центра ее распределения, правило трех сигм) позволяют существенно упростить анализ. Однако не всегда при анализе инвестиций доходы подчиняются нормальному закону.

В подобных случаях использование в про­цессе анализа только вышеперечисленных ха­рактеристик может приводить к неверным выво­дам. Поэтому необходимо использование допол­нительных параметров, таких, например, как коэффициент асимметрии (скоса), эксцесс и т. д.

Также следует отметить, что применение более сложного аппарата математической статистики (регрессионного и корреляционного анализа, методов имитационного моделирования) позволило бы провести более глубокий анализ риска и причин его возникновения [9].

В инвестиционном проектировании при оценке риска применяется также анализ чув­ствительности [2; 5; 9]. При использовании дан­ного метода риск рассматривается как степень чувствительности результирующих показате­лей реализации проекта к изменению усло­вий функционирования (изменение налоговых платежей, ценовые изменения, изменения средних переменных издержек и т. п.). В качестве результи­рующих показателей реализации проекта могут выступать: показатели эффективности (NPV, IRR, PI, срок окупаемости); ежегодные показатели проекта (чистая прибыль, накопленная прибыль).

Анализ начинается с установления базового значения результирующего показателя (напри­мер, NPV) при фиксированных значениях пара­метров, влияющих на результат оценки проекта. Затем рассчитываетса процентное изменение результата (NPV) при изменении одного из условий функ онирования (другие факторы предполагаются неизменными). Как правило, границы вариации партметров составляют + -10-15 %. а

Наиболее и формативным методом, приме­няемым для анализа рувствительности, яв­ляется расчет показател а астичности, пред­ставляющего бой отношение процентного изменения результирующе го показателя к изме -нению значения параетра на один процент.

расчет показателя эластичности 

где х- базовое значение варьируемого параметра, х2 - измененное значение варьируемого пара­метра, NPV1 - значение результирующего пока­зателя для базового варианта, NPV2 - значение результирующего показателя при изменении параметра.

Таким же образом исчисляются показатели чувствительности по каждому из остальных параметров.

Чем выше значения показателя эластичнос­ти, тем чувствительнее проект к изменениям данного фактора и тем сильнее подвержен проект соответствующему риску.

Анализ чувствительности можно также проводить и графически, путем построения прямой реагирования значения результирую­щего показателя (NPV) на изменение данного фактора. Чем больше угол наклона этой прямой, тем чувствительнее значение NPV к изменению параметра и больше риск.

Анализ чувствительности позволяет опреде­лить ключевые (с точки зрения устойчивости проекта) параметры исходных данных, а также рассчитать их критические (предельно допус­тимые) значения.

Как видно, анализ чувствительности до некоторой степени является экспертным (ка­чественным) методом. Кроме того, главным недостатком данного метода является предпо­сылка того, что изменение одного фактора рассматривается изолированно, тогда как на практике все экономические факторы в той или иной степени коррелированны.

По этой причине применение данного метода как самостоятельного инструмента анализа риска на практике, по мнению ряда авторов, весьма ограничено, если вообще возможно.

Метод проверки устойчивости [3; 6; 8; 9] предусматривает разработку сценариев реализа­ции проекта в наиболее вероятных или наиболее «опасных» для каких-либо участников условиях.

По каждому сценарию исследуется, как будет действовать в соответствующих условиях организационно-экономический механизм реа­лизации проекта, каковы будут при этом доходы, потери и показатели эффективности у отдельных участников, государства и населения. Влияние факторов риска на норму дисконта при этом не учитывается.

Проект считается устойчивым и эффектив­ным, если во всех рассмотренных ситуациях: NPV положителен; обеспечивается необходи­мый резерв финансовой реализуемости проекта.

Степень устойчивости проекта по отношению к возможным изменениям условий реализации может быть охарактеризована показателями предельного  (критического)  уровня объемов прозводства, ен производимой продукции и других параметров проекта .

Предельное зтачение параметра про7кта для некоторого t-го года его ртатизации определяется как такое значение этого параметра в t-ом году, при котором чистая прибыль участника в этом году становится нулевой .

Одним из наиболе  показателей этого типа является точкч безубыточ н8 )ти, характеризующая объем продаж, при котором выручка от реализации продукции совпадает с издержками производства : 

 точка безубыточности

где зс - постоянные затраты, уровень которых напрямою не связан с объемом производства продукци - переменные затраты, величина которых изменяется с изменением объема производства продукции; Ц - цена единицы продукции.

Для подтверждения работоспособности проектируемого производства (на данном шаге расчета) необходимо, чтобы значение точки безубыточности было меньше значений номинальных объемов производства и продаж (на этом шаге). Чем дальше от них значение точки безубыточности (в процентном отношении), тем устойчивее проект.

Обычно проект считается устойчивым, если в расчетах по проекту в целом значение точки безубыточности не превышает 60-70 % от номинального объема производства после освоения проектных мощностей.

Близость значения точки безубыточности к 100 %, как правило, свидетельствует о недоста­точной устойчивости проекта к колебаниям спроса на продукцию на данном шаге.

Но даже удовлетворительные значения точки безубыточности на каждом шаге не гарантируют эффективность проекта (положительность NPV), т. к. при определении точки безубыточно­сти в величине издержек обычно не включаются выплаты на компенсацию инвестиционных затрат, процентов по кредитам и т. д. В то же время высокие значения точки безубыточности на отдельных шагах не могут рассматриваться как признак нереализуемости проекта (например, на этапе освоения вводимых мощностей или в период капитального ремонта дорогостоящего высокопроизводительного оборудования они могут превышать 100 %).

Кроме того, данный метод не дает возможнос­ти провести комплексный анализ риска по всем взаимосвязанным параметрам, т. к. каждый показатель предельного уровня характеризует степень устойчивости в зависимости лишь от конкретного параметра проекта (объем произ­водства и т. д.).

В какой-то мере избежать недостатков, присущих анализу чувствительности, позволяет метод сценариев, при котором одновременному непротиворечивому изменению подвергается вся совокупность факторов исследуемого проекта с учетом их взаимозависимости [2; 5; 8; 9].

Метод сценариев предполагает описание опытными экспертами всего множества возмож­ных условий реализации проекта (либо в форме сценариев, либо в виде системы ограничений на значения осно вных технических, экономических и прочих параметров проекта) и отвечающих этим услвиям затрат, результатов и показателей эффективности.

В каче стве возможных гариантов целесо­образно построитб к минимум три сценария: пессимистический, оптимистический и наиболее вероятный (реалистиче с кий, илисредний).

Следующий этб реализации метода сце­нариев состоит в преобразовании исходной информащш о факторах неопределенности в информацию о вероятностях отдельных условий реализации и соответствующих показателях эффективности илв об интервалах их изменения.

На основе име ющихся данных определяются показатели экономической эффективности проекта.

Если вероятности наступления того или иного события, отрвженного вс0)нарии, известны точно (вероятностная не о пределенность), то ожидаемый интегральный эффект проекта рассчитывается по формуле   атематического ожидания:

ожидаемый интегральный эффект

где NPVi - интегральный эффект при условии реализации i-ого сценария, Рі - вероятность этого сценария.

При этом риск неэффективности проекта (Рэ) оценивается как суммарная вероятность тех сце­нариев (к), при которых ожидаемая эффектив­ность проекта (NPV) становится отрицательной.

риск неэффективности проекта

Средний ущерб от реализации проекта в случае его неэффективности (Уэ) определяется по формуле:

Средний ущерб от реализации проекта 

Вероятностное описание условий реали­зации проекта оправдано и применимо, когда эффективность проекта обусловлена, прежде всего, неопределенностью природно-климати­ческих условий (погода, характеристики грунта или запасов полезных ископаемых, возможность землетрясений или наводнений и т. п.) или про­цессов эксплуатации и износа основных средств (снижение прочности конструкций зданий и сооружений, отказы оборудования и т. п.).

В тех случаях, когда ничего не известно о вероятности отдельных сценариев (интервальная неопределенность) или реализация любого из них вообще не является случайным событием и не может быть охарактеризована в терминах теории вероятности, используется минимаксный подход, в частности, так называемый критерий оптимизма-пессимизма, предложенный Л. Гур-вицем.

Анализ рисков с использованием метода имитационного моделирования (метода Монте-Карло) представляет собой соединение методов анализа чувствительности и анализа сценариев на базе теории вероятности [2; 3; 5; 9]. Вме­сто того, чтобы создавать отдельные сценарии (наилучший, наихудший), в имитационном ме­тоде компьютер генерирует сотни возможных комбинаций параметров (факторов) проекта с учетом их вероятностного распределения. Каж­дая комбинация дает свое значение NPV, и в совокупности аналитик получает вероятностное распределение возможных результатов проекта. Реализация этой достаточно сложной методики возможна только с помощью современных информационных технологий.

Имитационное моделирование строится по следующей схеме:

  • -  формулируются параметры (факторы), влия­ющие на денежные потоки проекта;
  • -  строится вероятностное распределение по каждому параметру (фактору).

Как правило, предполагается, что функция распределения является нормальной, следова­тельно, для того чтобы задать ее, необходимо определить только два момента (математическое ожидание и дисперсию). Компьютер случайным образом выбирает значение каждого фак­тора риска, основываясь на его вероятностном распределении; эти значения факторов риска комбинируются с параметрами (факторами), по которым не ожидается изменение (напри­мер, налоговая ставка или норма амортизации), и рассчитывается значение чистого денежного потока для каждого года. По чистым денежным потокам рассчитывается значение чистого дисконтированного дохода (NPV). Описанные выше действия повторяются много раз (обычно около 500 имитаций), что позволяет построить вероятностное распределение NPV. Результаты имитации дополняются вероятностным и статистическим анализом.

Метод Монте-Карло является мощным средством анализа инвестиционных рисков, позволяя учитывать максимально возможное число факторов внешней среды. Необходимость его применения в отечественной финансовой практике обусловлена особенностями казах­станского рынка, характеризующегося субъек­тивизмом, зависимостью от внеэкономических факторов и высокой степенью неопределенности.

Но тем не менее этот подход не лишен недостатков:

  • -   существование коррелированных пара­метров сильно усложняет модель, оценка их зависимости не всегда доступна аналитикам;
  •  -  иногда трудно даже приблизительно опреде­лить для исследуемого параметра (фактора) или результирующего показателя вид вероятностного распределения;
  • -   при разработке реальных моделей может возникнуть необходимость привлечения специа­листов или научных консультантов со стороны;
  • -   исследование модели возможно толь­ко при наличии вычислительной техники и специальных пакетов прикладных программ;
  • -   следует также отметить относительную не­точность полученных результатов по сравнению с другими методами численного анализа.

В зависимости от того, каким методом учи­тывается неопределенность условий реализации проекта при определении ожидаемого NPV, поправка на риск в расчетах эффективности может включаться либо в норму дисконта (метод корректировки ставки дисконтирования) [8], либо в величину чистого гарантированно­го денежного потока (метод эквивалентного денежного потока) [9].

Норма дисконта, не включающая премии за риск (безрисковая норма дисконта), отражает доходность альтернативных безрисковых направлений инвестирования. Ее рекомендуется определять в следующем порядке.

При оценке коммерческой эффективности проекта в целом безрисковая коммерческая нор­ма дисконта может устанавливаться в соответ­ствии с требованиями к минимально допусти­мой будущей доходности вкладываемых средств, определяемой в зависимости от де­позитных ставок банков первой категории на­дежности (после исключения инфляции), а также (в перспективе) ставки LIBOR по годовым еврокредитам, освобожденной от инфляционной составляющей, практически 4-6 %.

Безрисковая норма дисконта, используемая для оценки эффективности участия предприятия в проекте, назначается инвестором самостоя­тельно.

Норма дисконта, включающая поправку на риск, отражает доходность альтернативных направ­лений инвестирования, характеризующихся тем же риском, что и инвестиции в оцениваемый проект.

При этом в величине поправки на риск обычно учитываются три типа рисков, связанных с реализацией инвестиционного проекта:

  • -  страновой риск;
  • -  риск ненадежности участников проекта;
  • -  риск неполучения предусмотренных проек­том доходов.

Поправка на каждый вид риска не вводится, если инвестиции застрахованы на соответствую­щий страховой случай.

Величина поправки на страновой риск оценивается экспертно на основании рейтингов стран мира по уровню странового риска инвес­тирования, публикуемых специализированной рейтинговой фирмой ВЕЫ (Германия), Ассо­циацией швейцарских банков, аудиторской корпорацией.

Размер премии за риск ненадежности участ­ников проекта определяется экспертно каждым конкретным участником проекта. Обычно по­правка на этот вид риска не превышает 5%, однако ее величина существенно зависит от того, насколько детально проработан организационно-экономический механизм реализации проекта, насколько учтены в нем опасения участников проекта.

Из сказанного можно сделать вывод о том, что не существует универсального метода, позволяющего провести полный анализ и дать оценку риска инвестиционного проекта. Каждый из рассмотренных выше методов обладает своими достоинствами и недостатками.

исследуемых параметров (факторов) и результирующих показателей (статистический метод, метод Монте-Карло); изолированное рассмотрение изменения одного фактора без учета влияния других (анализ чувствительности, метод проверки устойчивости) и т. д.

Качественные методы позволяют рассмотреть все возможные рисковые ситуации и описать все многообразие рисков рассматриваемого инвестиционного проекта, но получаемые при этом результаты оценки часто обладают не очень высокой объективностью и точностью.

Использование количественных методов дает возможность получить численную оценку рискованности проекта, определить степень влияния факторов риска на его эффективность. К числу недостатков этих методов можно отнести необходимость наличия большого объема исходной информации за длительный период времени (статистический метод); сложности при    определении    законов распределения

Преодоление этих недостатков возможно при использовании теории нечетких множеств, позволяющей сформировать полный спектр сце­нариев реализации инвестиционного проекта. При этом решение принимается не на основе не­скольких оценок эффективности проекта, по всей совокупности этих оценок. Ожидаемая эффек­тивность проекта не является точечным показа­телем, а представляет собой поле интервальных значений со своим распределением ожиданий, характеризующимся функцией принадлежности соответствующего нечеткого числа. А взвешенная полная совокупность ожиданий позволяет оце­нить интегральную меру ожидания негативных результатов инвестиционного процесса [9]. 

 

Литература

  1. Волков И., Грачева М. Анализ проектных рисков / [Электронный ресурс]. - Режим доступа: cfin.ru/fin-analysis/invest..
  2. Волков И., Грачева М. Вероятностные методы анализа рисков / [Электронный ресурс]. - Режим доступа: cfin.ru/finanalysis/invest.
  3. оронцовский А.В. Инвестиции и финансирование: Методы оценки и обоснования / - СПб. : Изд-во С.-Петербургского ун-та, 1998. - 528 с.
  4. Дмитриев М.Н., Кошечкин С.А. Количественный анализ риска ишестиционных проектов/ [Электронный ресурс]. -Режим доступа: cfin.ru/finanalysis/invest.
  5. Кошечкин С.А. Концепция риска инвестиционного проекта / [Электронный ресурс]. - Режим доступа: cfin.ru/finanalysis/invest.
  6. Красс М. С., Чупрынов Б. П. Математика для экономистов. - СПб.: Питер, 2005. - 464 с.
  7. Липсиц И.В., Коссов В.В. Экономический анализ реальных инвестиций: учеб. пособие /- М. : Экономистъ, 2004. - 347 с.
  8. Лукасевич И. Я. Имитационное моделирование ишестиционных рисков/ [Электронный ресурс]. - Режим доступа:cfin.ru/finanalysis/invest.
  9. Недосекин A., Воронов К. Новый показатель оценки риска инвестиций / [Электронный ресурс]. - Режим доступа: cfin.ru/finanalysis/invest.
Фамилия автора: А.М. Байдильдина
Год: 2013
Город: Алматы
Категория: Экономика
Яндекс.Метрика