Проблемы электромагнитной совместимости устройств силовой электроники с техносферой связаны как с усилением обратного влиянияполупроводниковых преобразователей на питающую сеть в связи с их непрерывно расширяющимся распространением, так и с ростом требований к качеству электроэнергии из-за роста числа потребителей, чувствительных к некачественной электрической энергии [1, 2, 3].
В настоящее время происходит интенсивный рост числа электронной аппаратуры, функционирование которой сопровождается потреблением из сети импульсного тока и, как следствие, генерацией в сеть высших гармонических составляющих, способных вызвать повреждение электрооборудования или его неправильное функционирование. В связи с этим необходимо определить требования к качеству электроэнергии, используемой при работе различного рода потребителей и обеспечить эти требования при создании и эксплуатации устройств, систем и комплексов [1, 2, 3].
Определение требований к качеству электроэнергии осуществляется разработчиками аппаратуры и обуславливается точностью устройств. По мере усложнения задач, решаемых электронной аппаратурой, происходит повышение требований к ее точности, и, следовательно, к качеству электроэнергии.
Взаимосвязь электромагнитных процессов в преобразователях и их влияние на технико -экономические показатели аппаратуры показаны на рисунке 1.
Для устройств автоматики и вычислительной техники эти требования сводятся в основном к стабильности напряжения питания в статических и динамических режимах.
Обеспечение требуемой стабильности напряжения питания производится за счет разработки соответствующих полупроводниковых преобразователей энергии. Повышение требований к стабильности напряжения приводит к усложнению схем преобразователей, что вызывает ухудшение массогабаритных, энергетических и других показателей.
Особо сложной и трудноразрешимой задачей является задача обеспечения стабильности напряжения в автономных подвижных объектах, где всегда имеют место жесткие ограничения на массогабаритные показатели оборудования.
Развитие современных технологий характеризуется широким распространением автономных объектов, способных решать различные производственные задачи при разнообразных условиях эксплуатации. Как правило, подобные объекты оснащаются автономными системами электроснабжения.
В зависимости от характера функциональных задач, решаемых автономными объектами, их системы электроснабжения содержат ряд источников вторичного электропитания (ИВЭП) соответствующих видов энергии.
Вследствие того, что технические устройства, реализующие производственные технологии, предъявляют определенные требования к качеству энергии, то соответствующие ИВЭП снабжаются соответствующими регуляторами и образуют вместе с ними замкнутые динамические системы.
Так как проектирование динамической системы производится при условии о беспечения номинальных значений энергетических координат, то отклонение от номинальных значений при работе системы воспринимаются ею как возмущения, действующие на определенные элементы системы. Отклонение энергетических координат от номинальных значений в ряде случаев приводит к некоторому эквивалентному изменению динамических свойств системы.
Оба отмеченных фактора обуславливают изменение качества функционирования динамических систем и требуют разработки методов учета или устранения указанных явлений при проектировании подобных систем. Отклонение энергетических координат от номинальных значений в процессе работы технических устройств обусловлено ограничением по мощности соответствующих ИП. [1, 2] Повышение мощности ИП при прочих равных условиях практически всегда ведет к увеличению габаритов и массы соответствующего оборудования, повышению непроизводительных затрат энергии, (например, увеличение потерь холостого хода) и следовательно , к ухудшению общего КПД энергооборудования. В силу указанных причин излишнее увеличение мощности ИП на автономных объектах и особенно на подвижных крайне нежелательно , поэтому мощность ИП автономных объектов на практике
всегда ограничена и часто бывает соизмерима с мощностью приемников. Следствием ограниченности мощности ИП является зависимость значений их выходных координат от режима и характера работы нагрузки, которая, например, для источников электрической энергии определяется внутренним сопротивлением источника питания. В свою очередь характер и режимы работы приемников определяются режимами работы соответствующих динамических систем, в состав которых они входят.
Таким образом, при соизмеримости мощности ИП с мощностью приемников, с одной стороны, происходит влияние режимов работы динамических систем на характер изменений и значения выходных (энергетических) координат ИП, с другой стороны, следствием отклонений энергетических координат ИП от их номинальных значений является изменение (обычно ухудшение) качества функционирования динамических систем, получающих энергию от данного ИП.
Если от одного ИП получают энергию ряд динамических систем, то вследствие указанных факторов может возникнуть взаимное влияние между процессами в разных системах через общий ИП. Для устранения этого явления можно производить раздельное энергоснабжение различных систем от нескольких автономных ИП. Однако подобное решение проблемы в общем случае не всегда удовлетворительно, поскольку применение целого ряда автономных ИП одной и той же физической природы приводит к ухудшению массогабаритных и энергетических показателей качества электрооборудования. Поэтому в настоящее время наиболее широкое распространение получили системы централизованного питания подвижных объектов, предполагающие использование одного общего ИП, от которого и получают энергию все системы подвижного объекта.
Таким образом, система централизованного энергоснабжения, кроме первичного источника питания (ИП), содержит ряд прео бразователей энергии, снабженных регуляторами соответствующих выходных (энергетических) координат, являющихся по существу замкнутыми регулируемыми динамическими системами.
Поскольку число приемников электроэнергии обычно велико и они расположены некомпактно , то между ИП и нагрузкой необходимо организовать распределительную сеть, включающую в себя устройства передачи энергии, устройства коммутации каналов ее передачи и ряд вспомогательных устройств (фильтры, ограничители, датчики контроля, индикации) [1, 2, 3].
Таким образом, первичные ИП совместно с распределительной, коммутационной регулирующей аппаратурой и всеми преобразователями энергии, образуют систему электроснабжения (СЭС), от которой получают энергию все потребители.
Развитие электроники, создание новых полупроводниковых преобразователей сделали возможным решение поставленных выше задач. Использование нового поколения силовых полупроводниковых приборов типа IGBT, GTO и др. в системах регулируемого электропривода позволяет улучшить массогабаритные показатели устройств управления и существенно повысить технико -экономические показатели электроприводов.
Литература
- Воронин П.А. Силовые полупроводниковые ключи: семейства, характеристики, применение. М.: Изд. Дом Додэка-XXI, 2001. – 390 с.
- Розанов Ю.К. Основы силовой электроники. М.: Энергоатомиздат, 1992.
- Забродин Ю.С. Промышленная электроника: Учебник для вузов. М.: Высшая школа, 1982. – 591 с.