Профессиональная направленность математической подготовки специалиста 

В основе математики как науки лежат специальные структуры, называемые математическими (алгебраические, порядковые, топологические). Некоторые из математических структур могут являться непосредственными моделями реальных явлений, другие - связаны с реальными явлениями лишь посредством длинной цепи понятий и логических структур. Из такого взгляда на предмет математики вытекает, что в любом математическом курсе должны изучаться математические структуры. Однако эффективность и качество обучения математике определяются не только глубиной и прочностью овладения студентами знаниями, умениями и навыками, но и уровнем их математического развития, степенью подготовки к самостоятельному овладению знаниями.Сами по себе математические знания и умения еще не определяют уровень умственного развития человека без умения использовать их в новых нестандартных ситуациях, без готовности к самостоятельному решению новых учебных проблем, не обязательно из области математики. Математическое развитие личности невозможно без адекватного содержания математического образования. В понятие "содержание образования" входит две стороны, две компоненты: информационная и познавательная. Поэтому знания следует рассматривать, с одной стороны, как результат мыслительных действий, а с другой - как процесс получения этого результата. Для усвоения должны задаваться две системы знаний. Знания первого рода включают в себя научные сведения о предметах, фактах, явлениях в их связях и отношениях. В знаниях второго рода зафиксированы путь и методы получения этих знаний учеником. Таким образом, для обеспечения математического развития у студентов должны быть сформированы не только порядковые и топологические структуры, которые представляют собой, прежде всего системы хранения знаний. Необходимо сформировать и структуры, которые представляют собой определенные качества математического мышления, которые являются, прежде всего средствами, методами познания. Такие структуры называются схемами математического мышления. К таким математическим схемам могут быть отнесены логические схемы, схемы конструирования алгоритмов, комбинаторные, стохастические схемы, а также образно-геометрические схемы. Именно такие математические схемы являются, в первую очередь, средствами для исследования реальных явлений и процессов. Все выделенные схемы математического мышления обладают одной общей характерной чертой: их формирование возможно осуществить лишь в течение длительного времени. Организация формирования схем математического мышления должна учитывать возрастные особенности учащихся, закономерности развития у них мыслительных процессов. Необходимо создание своеобразных концентров изучения таких схем. Содержательный аспект профессионализма выдвигает на первый план идею связи конкретного математического курса вуза и соответствующего школьного предмета. Реализация этой связи обеспечивает целеустремленность курса, понимание студентами перспективы его изучения, а значит, способствует сознательности усвоения курса. Это положение называется принципом ведущей идеи [1].

Особое значение с точки зрения профессиональной направленности математических курсов приобретают такие проявления преемственности, как повторение и пропедевтика. Роль повторения велика, прежде всего, в реализации преемственных связей между средней школой и вузом. Повторение школьного курса математики в вузе должно обеспечивать непрерывное развитие представлений о математических структурах, то есть должно иметь место не повторение ради повторения, не просто сохранение связей, а упрочение старых и установление новых. С этой целью следует на лекциях, практических занятиях по возможности большессылаться на известные из школы учащимся теоремы, примеры, позволяющие им лучше понять новый математический факт или с более высокой ступени взглянуть на уже известный. Организации повторения должна способствовать, прежде всего, сама структура математических курсов, когда спиралевидное построение программ позволяет естественным образом производить повторение на более высокой ступени представлений о математических структурах, устанавливать новые связи между старыми знаниями. Преемственность тесно связана с пропедевтикой, поскольку необходима постепенность перехода от отдельных математических фактов к их обобщениям. Формирование и развитие общих представлений студентов о математических структурах должно осуществляться постепенно, в процессе изучения конкретных примеров таких структур с последующими обобщениями их свойств. Пропедевтика - трудоемкая и достаточно тонкая р або та, которой студента надо учить в стенах вуза не только на словах, но и на деле. В математических курсах вузов пропедевтика служит двум целям: изучению данного курса (или раздела его) и косвенному обучению студента приемам осуществления пропедевтики. Она может реализоваться по двум направлениям: первое - вводные лекции перед изучением того или иного раздела, в которых ограничиваются наглядными соображениями; второе - использование понятия до его строгого формального определения на незавершенном конкретно-интуитивном уровне.

Так, для будущих специалистов-математиков изучение дифференциальных уравнений важно не само по себе, а лишь в связи с необходимостью закрепить уже изученные разделы математического анализа. Поэтому в программе курса "Дифференциальные уравнения" следует отдать предпочтение тем вопросам, рассмотрение которых основано на использовании как можно большего числа разделов математического анализа, уже изученных студентами на младших курсах. Роль математики состоит в том, что формирование математических структур мышления позволяет развить не только математические способности, но и ум человека, его личность в целом. Математическому мышлению присущи все качества научного мышления (логичность, способность к обобщению, гибкость, рациональность и т.д.), поэтому при помощи математики можно развить все эти качества. Студенты при изучении математики получают представление о роли четких определений и формулировок, о способах логического вывода, они знакомятся с методами решения возникающих перед ними проблем, имеющих и внематематическое значение (аналогия, сравнение, обобщение, анализ и синтез и т.д.). Обучение математике на социокультурном опыте, формирование у студентов логических, алгоритмических и комбинаторных схем мышления, несомненно способствует формированию организаторских навыков умственного труда (планированию своей работы, поиску рациональных путей ее выполнения, критической оценке результатов и т.п.). Личностный аспект обучения математике состоиттакже в его нравственной стороне. Изучение математики, ее структур вырабатывает в человеке потребность преодолеть сопротивление между нашими представлениями и их научным обоснованием, что способствует не только четкости, логичности мысли, но и воспитывает такие моральноэтические и волевые качества, как аккуратность, аргументированность, принципиальность, умение воспринимать иное мнение, преданность истине, упорство в достижении цели, трудолюбие и честность. Духовное развитие личности происходит путем воздействия изучения математики не только на разум человека, но и на его эмоциональную сферу. Математика в некоторых своих отношениях отмечена такими чертами, которые создают ей воспитательные возможности более значительные, чем у других дисциплин. Изучающий математику быстро привыкает к тому, что успех может принести только непредубежденное, беспристрастное напряжение мысли.

 

Литература

  1. Тестов В.А. Стратегия обучения математике. М.: Технологическая школа бизнеса, 1999. С.303.
Год: 2012
Город: Костанай