Технология систем передачи информации c использованием волоконно-оптических линий связи

Аннотация

В работе рассматривается технология производства систем и средств связи. Телекоммуникация - это одна из самых быстроразвивающихся высокотехнологических и наукоемких отраслей экономики. Показано, что одним из основных направлений современного научно-технического прогресса является всестороннее развитие волоконно-оптических систем связи, обеспечивающих возможность доставки на значительные расстояния чрезвычайно большого объёма информации с наивысшей скоростью.Одной из перспективных технологий систем передачи с использованием ВОЛС является технология WDM. Эта технология становится актуальной, когда оператор заинтересован в увеличении скорости передачи своих сетей.На сегодняшний день технология DWDM обеспечивает самый быстрый и экономичный рост полосы пропускания, на практике показывая свою надежность.Таким образом, полная пропускная способность линии связи не ограничена скоростью работы используемых электронных устройств. При необходимости, полную пропускную способность можно увеличить в любой момент, просто добавив в существующую систему WDM несколько каналов. Самую быструю линию связи TDM, которую только можно создать с использованием наиболее современной техники, в системе WDM можно передавать как один из многих каналов. Технология WDM позволяет достичь суммарной скорости передачи по линии связи, которая сопоставима с огромной пропускной способностью, предоставляемой оптическим волокном.

Бурное развитие технологии производства систем и средств связи с практически неограниченной пропускной способностью и дальностью передачи и массовое их использование, по сути, привели к информационно-технологической революции и формированию глобального информационного общества. Сегодня телекоммуникация - это одна из самых быстроразвивающихся высокотехнологических и наукоемких отраслей мировой экономики. Уровень развития технологических разработок, производства и внедрения в различные сферы деятельности телекоммуникационных систем во многом формируют положительный образ передового государства.

Значение магистральных сетей в мире связи очень велико. Именно от их надежной работы зависит функционирование международной и междугородней телефонной связи, Internet, корпоративных сетей многих крупных компаний.

Одним из основных направлений современного научно-технического прогресса является всестороннее развитие волоконно-оптических систем связи, обеспечивающих возможность доставки на значительные расстояния чрезвычайно большого объёма информации с наивысшей скоростью. Уже сейчас имеются волоконно-оптические линии связи (ВОЛС) большой информационной емкости с длиной регенерационных участков более 200 км. Однако область применения волоконно-оптических систем передачи (ВОСП) не ограничивается передачей данных на большие расстояния для непосредственной связи, а имеет более широкий спектр, от бортовых систем до локальных (LAN) и глобальных (WAN) волоконно-оптических телекоммуникационных сетей. Весьма перспективно использование волоконно-оптической техники в кабельном телевидении, так как она позволяет с одной стороны обеспечить высокое качество передачи изображения, а с другой- существенно расширить возможности информационного обслуживания абонентов.

Пропускная способность оптических сетей никогда не бывает избыточной. Волоконно-оптические линии, не задействованные сегодня, уже завтра будут загружены "под завязку". Преобладание трафика Internet и других пакетных сетей в суммарном объеме всей передаваемой информации требует совершенно новых подходов к организации каналов связи и приводит к проблеме нехватки волокна. Преодолеть ее можно было бы за счет прокладки дополнительных линий, однако на это требуются огромные затраты.

Потребности в дальнейшем наращивании пропускной способности систем передачи информации стимулировала исследования в направлении поиска новых методов решения этой задачи. Одной из перспективных технологий систем передачи с использованием ВОЛС является технология WDM. Эта технология становится актуальной, когда оператор заинтересован в увеличении скорости передачи своих сетей. На междугородной сети с появлением новых услуг и технологий (мультисервисных сетей, ATM технологий, мультимедиа связи, и т.д.) потребность в увеличении пропускной способности сетей связи удваивается каждый год, и этот темп вряд ли замедлится в ближайшие десять лет. Снижение цен поставщиками, ослабление монопольных позиций государства в телекоммуникациях и неослабевающий интерес к использованию Интернета приводят только к увеличению спроса на скорость передачи. На сегодняшний день технология DWDM обеспечивает самый быстрый и экономичный рост полосы пропускания, на практике показывая свою надежность. Во многих случаях благодаря применению технологии DWDM пропускная способность оптической линии связи может быть увеличена в сотни раз.

По-видимому, данная технология еще не скоро достигнет своего предела по пропускной способности. Дальнейший рост числа каналов возможен за счет уменьшения спектрального расстояния между ними, использования усилителей EDFA с большей шириной спектра, или за счет применения специализированных волокон, позволяющих осуществлять передачу в диапазоне шириной до 1200 нм без дополнительного усиления.

Полоса пропускания оптического волокна значительно шире, чем требуется на практике любому отдельно взятому приложению. Необходимость максимально эффективно использовать возможности передачи информации по оптическому волокну послужила толчком для интенсивных исследований.

Первой стали применять технологию TDM, которая широко используется в обычных системах электросвязи. Эта технология предусматривает объединение нескольких входных низкоскоростных каналов в один составной высокоскоростной канал. Входные каналы по очереди модулируют высокочастотную несущую в течение выделенных им коротких промежутков времени (тайм-слотов), которые периодически повторяются. Например, в течение первого тайм-слота несущая модулируется первым входным каналом, в течение второго - вторым, в течение третьего - третьим, в течение четвертого - четвертым, в течение пятого - снова первым, в течение шестого - снова вторым и т. д. в соответствии с рисунком 1 [1].

Мультиплексор на одной стороне канала связи собирает данные со всех источников и передает их по волокну в течение соответствующих тайм-слотов. Демультиплексор на другой стороне линии связи выделяет тайм-слоты, считывает данные и передает их соответствующим пользователям уже в виде единых выходных потоков.

Использование технологии TDM позволило увеличить пропускную способность волоконно-оптических линий связи до 10 Гбит/с. Линии со скоростью 10 Гбит/с будут постепенно заменять первоначально использовавшиеся системы TDM со скоростью 2,5 Гбит/с. Скорость передачи 10 Гбит/с в некотором роде разграничивает два типа систем TDM. Выше этой скорости некоторые основные характеристики оптического волокна - поляризационная модовая дисперсия, хроматическая дисперсия - начинают значительно влиять на качество передачи и должны приниматься во внимание при разработке систем связи. Это является серьезным препятствием для ведущихся в настоящее время разработок систем TDM со скоростями передачи 40 Гбит/с и выше. Кроме того, для дальнейшего увеличения скорости требуются новые методы модуляции лазерного излучения, что ведет к росту сложности и стоимости приемопередающего оборудования [2].

Несмотря на все трудности, скорость передачи в цифровых сетях связи постоянно растет. Ожидается скорое появление на рынке оборудования цифровых систем передачи SDH/SONET, обеспечивающих мультиплексирование потоков уровня STM-16 и STM-64 в высокоскоростные потоки уровня STM-256. По всей видимости, первые линии связи уровня STM-256 будут применяться в сетях городского и регионального масштаба. По мере увеличения дальности передачи и появления более совершенных методик компенсации различных негативных факторов линии связи уровня STM-256 будут находить все более широкое применение. Возможно, в некоторых случаях для увеличения дальности таких линий связи коммерчески более выгодно будет использовать регенерацию сигнала.

Одной из перспективных технологий сверхдальней связи считается

100

солитонная передача данных. Солитон - это особый вид светового импульса, который при распространении в определенной среде, и в частности - оптическом волокне, сохраняет свою форму (преимущественно гауссову). При усилении солитона через равные расстояния, теоретически он может распространяться сколь угодно далеко. Это связано с тем, что показатель преломления среды, в которой распространяется солитон, имеет небольшую добавку, которая квадратично зависит от мощности сигнала. При малых мощностях сигнала этой добавкой можно пренебречь. Однако при распространении солитона, представляющего собой волновой пакет большой мощности, нелинейные явления и хроматическая дисперсия при определенных условиях могут компенсировать изменения формы солитона. При этом солитон обладает исключительной стабильностью параметров распространения и устойчивостью к внешним возмущениям. Несмотря на то, что дальность распространения солитонов и ограничена затуханием сигнала в волокне, эта технология может успешно применяться для передачи сигналов большой мощности на большие расстояния. При солитонной передаче сигналов используют кодирование с возвращением к нулю в соответствии с рисунком 2 [3].

Независимо от того, станет ли технология TDM универсальным протоколом, таким как IP, или будет адаптирована в соответствии со стандартами SONET/SDH, в ближайшие годы ее будут использовать многие операторы. «Второе дыхание» технологии TDM обеспечили успехи в изучении солитонов. Какие бы проблемы не возникали в технологии TDM и какие бы пути их решения не использовались, ни одна существующая технология не может заменить ее в настоящее время. Однако технология WDM может использоваться параллельно с технологией TDM для повышения ее эффективности.

В технологии WDM нет многих ограничений и технологических трудностей, свойственных TDM. Для повышения пропускной способности, вместо увеличения скорости передачи в едином составном канале, как это реализовано в технологии TDM, в технологии WDM увеличивают число каналов (длин волн), применяемых в системах передачи.

Рост пропускной способности при использовании технологии WDM осуществляется без дорогостоящей замены оптического кабеля. Применение технологии WDM позволяет сдавать в аренду не только оптические кабели или волокна, но и отдельные длины волн, то есть реализовать концепцию «виртуального волокна». По одному волокну на разных длинах волн можно одновременно передавать самые разные приложения - кабельное телевидение, телефонию, трафик Интернет, "видео по требованию" и т.д. Как следствие этого, часть волокон в оптическом кабеле можно использовать для резерва.

Применение технологии WDM позволяет исключить дополнительную прокладку оптических кабелей в существующей сети. Даже если в будущем стоимость волокна уменьшится за счет использования новых технологий, волоконно-оптическая инфраструктура (проложенное волокно и установленное оборудование) всегда будет стоить достаточно дорого. Для ее эффективного использования, необходимо иметь возможность в течение долгого времени увеличивать пропускную способность сети и менять набор предоставляемых услуг без замены оптического кабеля. Технология WDM предоставляет именно такую возможность.

Технология WDM пока применяется в основном на линиях связи большой протяженности, где требуется большая полоса пропускания. Сети городского и регионального масштаба и системы кабельного телевидения потенциально также являются широким рынком для технологии WDM [4].

Необходимость эффективно использовать проложенный кабель привела к значительному увеличению числа каналов, передаваемых по одному волокну, и уменьшению расстояния между ними. В настоящее время системы с частотным интервалом между каналами 100 ГГц (~ 0,8 нм) и меньше называют системами плотного волнового мультиплексирования DWDM. Теоретически возможна передача в любом диапазоне длин волн, однако практические ограничения оставляют для использования в системах WDM узкий диапазон в окрестности длины волны 1550 нм. Но даже этот диапазон предоставляет огромные возможности для передачи данных [5].

Многочисленные преимущества систем DWDM отражаются на их цене. Во- первых, становятся исключительно важными многие свойства оптических компонентов и характеристики оптического кабеля. Во-вторых, требования к архитектуре сети и выбору компонентов систем WDM являются более жесткими, чем, например, для систем TDM уровня STM-16.

Совместное применение технологий TDM и WDM позволяет значительно расширить спектр предоставляемых услуг, оставляя практически без изменений большую часть имеющегося оборудования. Применение технологии WDM дает многочисленные преимущества, однако требует высокого уровня подготовки технического персонала и современного контрольно-измерительного оборудования.

Обе технологии WDM и TDM применяются для увеличения информационной пропускной способности сети. Хотя они не исключают, а скорее дополняют друг друга, можно сравнить такие их характеристики, как гибкость структуры линий связи, скорость передачи и влияние на относительный уровень ошибок по битам.

В принципе, технология TDM дает возможность передачи по линии связи каналов, разнородных по типу передаваемых данных. Технология TDM позволяет разделить волоконно-оптический кабель на множество каналов, по которым с различными скоростями передаются различные типы трафика. Возможны различные способы распределения тайм-слотов. Они могут быть постоянно закреплены за определенными приложениями или выделяться по требованию DAMA (DemandAssignmentMultipIeAccess). Можно изменять продолжительность таймслотов или полностью их сключить. В последнем случае, данные передаются в виде отдельных пакетов, каждый из которых включает адрес источника и отправителя статистическое мультиплексирование). Несмотря на все эти возможности, технология TDM работает лучше всего, когда по всем логическим каналам передается один тип трафика, а все тайм-слоты имеют одинаковую продолжительность и постоянно закреплены за отдельными каналами. Этот вариант технологии TDM достаточно прост в реализации и управлении, и его эксплуатационные издержки также меньше.

В технологии WDM каналы полностью независимы, а потому она дает большую гибкость, чем технология TDM. Технология WDM позволяет без каких-либо трудностей передавать по линии связи множество каналов, тип трафика и скорость передачи данных в каждом из которых может существенно различаться. По различным каналам WDM в одном волокне может передаваться трафик Ethernet (10/100/1000Мбит/с), цифровое видео и тестовые сигналы, и эта система будет легко управляться.

Добавление новых каналов в существующую систему WDM не вызывает проблем и не требует заново распределять все тайм-слоты, как в технологии TDM.

В технологии TDM пропускная способность увеличивается за счет увеличения скорости передачи битов в линии связи. Насколько быстрой может быть сделана эта скорость - в пределах определенных фундаментальных ограничений оптического волокна - зависит от используемых электронных компонентов. Чтобы получать данные от каждого источника, хранить их, передавать втечение соответствующих тайм-слотов, считывать и корректно доставлять получателю, требуется применение цифровых интегральных схем. Все эти цифровые компоненты должны работать со скоростью, равной или близкой к суммарной скорости передачи линии связи. То есть, для каждого канала, независимо от его пропускной способности, должно быть установлено электронное оборудование, способное поддерживать полную пропускную способность линии связи.

Оптическое волокно позволяет передавать данные со скоростью в несколько Тбит/с, в то время как коммерчески доступные цифровые электронные устройства в настоящее время выполняют лишь порядка 1 миллиарда операций в секунду (1 Гбит/с). Несмотря на то, что быстродействие электронных устройств продолжает расти, технология TDM всегда будет иметь экономические ограничения из-за необходимости установки на каждый канал самого современного оборудования. Едва ли с помощью технологии TDM когда-либо будет достигнута суммарная скорость передачи по линии связи, соизмеримая с огромной пропускной способностью волоконно-оптического кабеля. Это ограничение касается как глобальных, так и локальных сетей передачи данных.

Хотя к оконечному электронному оборудованию для отдельных каналов WDM и предъявляются определенные требования, как и в системах TDM, все остальное оборудование в канале может поддерживать только скорость передачи по этому каналу, а не полную скорость составного сигнала. Таким образом, полная пропускная способность линии связи не ограничена скоростью работы используемых электронных устройств. При необходимости, полную пропускную способность можно увеличить в любой момент, просто добавив в существующую систему WDM несколько каналов. Самую быструю линию связи TDM, которую только можно создать с использованием наиболее современной техники, в системе WDM можно передавать как один из многих каналов. Технология WDM позволяет достичь суммарной скорости передачи по линии связи, которая сопоставима с огромной пропускной способностью, предоставляемой оптическим волокном.

 

Список литературы:

  1. Жирар, А. Руководство по технологии и тестированию систем WDM / А. Жирар; пер. с англ, под ред. А.М. Бродниковского, Р.Р. Убайдуллаева, А.В.Шмалько. / Общая редакция А.В. Шмалько. - M.: EXFO,2001. - 264 с. 103
  2. Убайдуллаев, Р.Р. Волоконно-оптические сети/Р.Р.Убайдуллаев. - M.: Эко-Трендз, 2001. - 267 с.
  3. Слепов Н.Н. Современные технологии цифровых оптоволоконных сетей связи. M.: Радио и связь, 2000.
  4. Рекомендация ITU-T G.652. Характеристики одномодового волоконно- оптического кабеля.
  5. Вербовецкий А.А. Основы проектирования цифровых оптоэлектронных систем связи. M.: Радио и связь, 2000.
Год: 2017
Город: Атырау
Категория: Экономика