Аннотация. В данной статье рассмотрена история возникновения и развития комплексных чисел. Подчеркивается применение мнимого числа и функции от комплексного переменного во многих науках. В частности, комплексные числа имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.
Современная теория функций комплексного переменного охватывает очень большую область математики. Так называют обширную и разветвленную совокупность математических дисциплин – теоретических и прикладных.
Сначала рассмотрим вопрос об истории теории функций комплексного переменного. Понятие мнимого, а затем и комплексного числа, известно в математике и используется с давних времен. Однако еще в течение очень долгого времени, несмотря на некоторые удачные мысли, относительно интерпретации мнимых и комплексных чисел, их природа не была разгадана и к ним относилась как к некоторому сверхъестественному явлению в математике.
Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.
Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгоевремяполагали, чторезультатизмерениявсегдавыражаетсяиливвиденатуральногочисла, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что «элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом» [1]. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками во II веке до н. э. Отрицательные числа применял в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения - положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя [1].
В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел.
Когда кубическое уравнение имеет один действительный корень оно решается без всяких проблем, но если оно имеет три действительных корня, то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени.
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше, чем 4, нельзя решить алгебраически.
Долгое время отношение математиков к мнимым величинам было на грани мистики. Поражало то, что несмотря на то, что этих чисел нет, но тем не менее они формально являются настоящими решениями уравнений. Еще Лейбниц Г.В. писал, что мнимые числа – это прекрасное и чудесное убежище божественного духа почти, что амфибия бытия с небытием. Подобные утверждения о мистических свойствах мнимых были и у других ученых.
Понадобился гений Эйлера, чтобы признать мнимые числа настоящими числами и распространить вычисление с этими числами на все разделы математики. Именно Эйлеру и принадлежит гениальная догадка о том, что комплексные числа являются алгебраически замкнутыми относительно всех алгебраических операций. То есть не существует таких алгебраических операций над комплексными числами, которые невозможно было бы сделать не выходя за рамки комплексных чисел.
Первое строгое доказательство этого факта сумел получить Гаусс в 1799 году. Из этого факта следуют две самые знаменитые теории математики. Это основная теорема алгебры о том, что любой многочлен степени n с комплексными корнями всегда имеет n корней, которые в общем случае также комплексные.
И теорема в теории функций комплексного переменного, где говорится, что если мы знаем все значения такой аналитической функции на каком-то участке, то мы можем однозначно узнать все ее значения за пределами этого участка.
Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы, считал что à × à = -à. Кардано называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался их не употреблять. В самом деле, с помощью
таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название “мнимые числа” ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века - Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа - 1 (мнимой единицы).
Этот символ вошел во всеобщее употребление благодаря К. Гауссу. Термин “комплексные числа” так же был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д. Образующих единое целое.
В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование.
Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVIII веков была построена общая теория корней n-ых степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707):
(cosj + i × sinj )n = cos n ×j + i × sin n ×j . С помощью этой формулы можно было также вывести формулы для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 году замечательную формулу:
ei×x = cos x + i × sin x , которая связывала воедино показательную функцию с тригонометрической.
С помощью формулы Л. Эйлера можно было возводить число ё в любую комплексную степень. Интересно, например, что ei×p = -1. Можно находить синусы и косинусы от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного [2].
В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.
Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.
Как утверждал Л. Карно “Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств”.
В конце XVIII века, в начале XIX века было получено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число
z = a + b × i точкой m (a, b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором , идущим в эту точку из начала координат. Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.
Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости. Существует теорема Фробениуса, которая показывает, что поле комплексных чисел является единственной математической конструкцией, которая является алгебраически замкнутой, не имеет делителей нуля и сохраняет все свойства вещественных чисел (коммутативность и ассоциативность).
Грубо говоря, комплексные числа это самые главные числа в математике.
Поэтому многие математические положения на языке комплексных чисел формулируются очень кратко и изящно. Доказательство многих теорем становится очень компактным и простым. Вычисления в технике и в таких науках, как физика, механика, астрономия, значительно упрощаются.
Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые: Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев - к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров - к проблемам квантовой теории поля. Также комплексными числами пользовался отец русской авиации Н. Е. Жуковский (1847 – 1921) при разработке теории крыла, автором которой он является [3].
Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.
И как говорил Ф. Клейн: “Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно по мере того как обнаруживается польза от их употребления, они получают более и более широкое распространение”.
СПИСОК ЛИТЕРАТУРЫ
- Рыбников К.А. История математики 1, 2 части. – М.: Московский Университет, –365 с.
- Радыгин И.М., Голубева О.В. Применение функций комплексного переменного в задачах физики и техники. – М.: Высшая школа, – 160 с.
- Миронов В.В. Современные проблемы естественных, технических и социально-гуманитарных наук. – М.: Гардарики, 2006. – 639 с.