Предотвращение оползней - одна из важнейших инженерных задач служб Министерства по Чрезвычайным ситуациям Республики Казахстан. Работа по повышению устойчивости склонов всегда была актуальной.
Подход к проблеме устойчивости откосов, не затрагивая ее геологических аспектов, имеет двоякий характер. С одной стороны, разрабатываются методы расчета устойчивости, базирующиеся на определении напряженно-деформированного состояния сооружений с применением той или иной математической модели грунта, при строгом учете всех действующих сил, переменности расчетных показателей свойств грунтов, а также нахождением формы и положения вероятных поверхностей скольжения на основе вариационных принципов. Другое направление, сохраняющее свою большую значимость, связано с дальнейшим обоснованием и совершенствованием принципиальной концепции инженерного подхода к оценке устойчивости земляных откосов, в том числе инженерных методов расчета круглоцилиндрических и ломаных поверхностей скольжения для практических целей.
На рис. 1 показана плоская поверхность сдвига, проходящая по основанию насыпи на косогоре. Причиной образования сдвига по плоскости послужило то, что естественная поверхность склона не была расчищена должным образом и в основании сохранился слой слабого материала.
Удерживающая сила по поверхности сдвига может быть определена согласно условию прочности Мора - Кулона, выражаемого уравнением:
где τ – прочность на сдвиг, с - сцепление, σn – номинальное напряжение на плоскости сдвига и φ - угол внутреннего трения.
Следует отметить, что С и P являются параметрами прочности грунта по поверхности сдвига. Для плоскости сдвига длиной L и единичной ширины удерживающая сила равна cL+
COS C tgP, где W - вес грунта выше плоскости сдвига и а - угол наклона природного склона.
Отметим, что COSC выражает нормальную составляющую от веса к плоскости. Сдвигающая сила представлена составляющей от веса, направленной вдоль плоскости сдвига, и равна sina.
Коэффициент запаса определяется отношением удерживающей силы к сдвигающей или:
Если поверхность скольжения состоит из двух или более плоскостей, этот случай значительно усложняется.
На рис. 2 показана поверхность скольжения из двух различных плоскостей. Призма обрушения разделяется на два блока. Как нормальная, так и сдвигающая сила на каждой плоскости зависят от силы взаимодействия между обоими блоками и могут быть определены только при совместном рассмотрении блоков. Нижний блок имеет вес W1 и длину плоскости сдвига L1, а верхний блок - вес W1 и длину плоскости L2.
На рис. 3 - приведена схема выделенных элементов для каждого блока. Сдвигающая сила вдоль плоскости скольжения равна предельному сопротивлению сдвигу, деленному на коэффициент запаса. Для двух приведенных блоков имеется четыре неизвестных: N1, N2, Р и Г, где N1 и N2 - нормальные к плоскости сдвига силы нижнего и верхнего блоков соответственно; Р - сила между двумя блоками и Г - коэффициент запаса. Исходя из условий статики, имеются четыре уравнения, а именно, сумма сил, действующих в горизонтальном и вертикальном направлениях, для каждого блока равна нулю. Так как при четырех неизвестных имеются четыре уравнения, можно найти решение относительно коэффициента запаса.
Если ослабленные плоскости не непрерывны или положение опасных плоскостей не задано априори, необходимо выполнять проверку для различных плоскостей сдвига до тех пор, пока не будет найден минимальный коэффициент запаса. Для определения минимального коэффициента запаса при круглоцилиндрической поверхности скольжения, следует провести большое число кругов для выявления наиболее опасного.
На рис. 4 показан один из множества кругов, для которых должен быть установлен коэффициент запаса. Отсек i-м порядковым номером имеет вес WJ, длину поверхности скольжения LJ; угол наклона QJ; и нормальную силу NJ. Коэффициент запаса равен отношению удерживающей силы к сдвигающей. Согласно условию Мора — Кулона, удерживающая сила в i-м отсеке равна CLJ + NJ tg ф.
При значительных оползневых давлениях нередко бывает целесообразно проектировать по длине склона несколько удерживающих сооружений. В таком случае местоположение отдельных противооползневых конструкций на пути движения оползня устанавливается по несущей способности каждого сооружения, воспринимающего соответствующую долю оползневого давления.
При значительной мощности оползневого массива наиболее целесообразным является проектирование удерживающих конструкций из свай. В этом случае наиболее целесообразным является использование буронабивных свай.
Указанный анализ размещения противооползневых удерживающих конструкций производят для нескольких расчетных разрезов склона в характерных местах по ширине оползня.
После анализа размещения удерживающих конструкций на каждом из поперечников решается вопрос о расположении их по всему склону. Как правило, рекомендуется ось каждой удерживающей конструкции располагать таким образом, чтобы образовалась единая ось противооползневого сооружения, причем длина удерживающих конструкций на каждом ярусе должна превышать ширину оползня в этом месте (во избежание обтекания конструкций оползнем).
По значениям оползневого давления, вычисленным для каждого расчетного сечения, в котором устанавливается удерживающая конструкция, по ширине оползня строится эпюра оползневого давления. Эта эпюра служит для расчета сечений и числа удерживающих элементов в одной конструкции в каждом оползневом склоне (по его ширине). Число удерживающих элементов в одной конструкции (например, число рядов буронабивных свай) по ширине оползня может быть различным.
При окончательном расчете оползневого давления величина отпора лежащего ниже слоя грунта учитывается в том случае, если отсеченная удерживающей конструкцией нижняя часть склона находится в состоянии устойчивого равновесия. Величину отпора при использовании аналитического метода Г. М. Шахунянца можно вычислить по формуле [3]:
где ік -номер отсека, расположенного за удерживающей конструкцией (вниз по склону). Расчетная схема для определения давления грунта на противооползневые сооружения с учетом сейсмических воздействий соответствует статической теории сейсмостойкости, предполагающей предельное напряженное состояние блока при совместном рассмотрении гравитационных и инерционных сил, пропорциональных интенсивности сейсмического воздействия как на рис. 5.
Для проведения эксперимента по изучению оползневого процесса в лаборатории КазНТУ имени К.И. Сатпаева использовалась установка, моделирующая механику движения оползня. Проводились экспериментальные исследования оползневого процесса. Была использована опытная установка, которая позволяет изучить модель движения оползня при различных условиях. То есть, могли менять угол наклона и структуру плоскости (деревянная, стеклянная плоскость). В качестве образца были использованы деревянные бруски с массой, которая варьировалась от 180,1 до 838,7 грамм. Габариты опытной установки моделирующей оползневый процесс: длина - 59 см, высота - 34 см, ширина - 22 см.
Исследования на установке позволили получить следующие результаты:
- скорость модели-оползня изменялась от 89 до 150 см/с (при сколжении деревянной модели по стеклянной поверхности);
- коэфициент сколжения модели-оползня изменялся от 0,012 до 0,5;
- масса модели-оползня изменялась от 180 до 838 г.;
- время движения модели-оползня составляло (0,12-1,4) с.
ЛИТЕРАТУРА
- Пояснительная записка по инженерно-геодезическим работам на объекте: Проверка пассажирской подвесной канатной дороги от площади Абая до горы Кок-Тюбе в городе Алма-Ата. КазГИИЗ, 1988г.
- Отчёт по теме «О комплексных инженерных изысканиях на г.Кок-Тюбе для разработки проекта по стабилизации оползневого процесса». КазГИИЗ. Заказ № 19-04, 2004 г.
- Драников А. М.: Оползни. Типы, причины образования, меры борьбы. Киев,
- Оползни и инженерная практика. /Под ред. Э. Б. Эккеля. Сокращ. пер. с англ. проф. М. Н. Гольдштейна. М., Трансжелдориздат,
- Федоров И. В.: Методы расчета устойчивости склонов и откосов. М., Стройиздат,
- Проектирование противооползневых мероприятий.: Вопросы геотехники. 1971, вып. 18 (ДИИТ).
- Гинзбург Л. К.: Применение противооползневых удерживающих конструкций из буронабивных свай. — Транспортное строительство, 1972, №