Впервые матрицы упоминались ещё в древнем Китае, называясь тогда «волшебным квадратом». Основным применением матриц было решение линейных уравнений. Так же, волшебные квадраты были известны чуть позднее у арабских математиков, примерно тогда появился принцип сложения матриц. После развития теории определителей в конце 17-го века, Габриэль Крамер начал разрабатывать свою теорию в 18-ом столетии и опубликовал «правило Крамера» в 1751 году. Примерно в этом же промежутке времени появился «метод Гаусса». Теория матриц начала своё существование в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу. Термин «матрица» ввел Джеймс Сильвестр в 1850 г.
Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.
Матрицы допускают следующие алгебраические операции:
- сложение матриц, имеющих один и тот же размер;
- умножение матриц подходящего размера (матрицу, имеющую n-столбцов, можно умножить справа на матрицу, имеющую n-строк);
- умножение матрицы на элемент основного кольца или поля (т. е. скаляр).
Матрица – множество чисел, образующих прямоугольную таблицу, которая содержит m – строк и n – столбцов. Для обозначения матрицы используется надпись:
5
аŋ, где i – номер строки, j – номер столбца
Далее рассмотрим виды матриц.
Матрицы С и D имеют размеры 3х3 и 2х2. В том случае, когда количество строк матрицы равняется количеству ее столбцов, матрица называется квадратной. Значитматрица C – квадратная матрица третьего порядка, а матрица D - квадратная матрица второго порядка.
/69
C= 54
\20
Матрица, которая содержит только одну строчку или один столбец называется вектором. В таких матрицах можно выделить вектор-строка и вектор-столбец. Так, матрица K – это вектор-строка, а матрица F – вектор-столбец.
А’ = ·7ɔ Зɔ ;
Квадратная матрица, у которой в главной диагонали стоят ненулевые элементы, а все остальные – нули называется диагональной матрицей. Матрица L – диагональная матрица третьего порядка. Если ненулевые элементы равны только единицам, то это единичная матрица, она всегда обозначается буквой Е. В нашем случае матрица Е – тоже единичная матрица третьего порядка.
/6 О О X /ı о ох ;
Xo О —2/ Xo 0 1/
Если все элементы матрицы нули,
то это нулевая матрица. Например, матрица V –
нулевая матрица третьего порядка.
/0 О OX.
Xo о о/
Если в данной матрице поменять строки и столбцы местами, то получится транспонированная матрица данной. Например, дана матрица М, каждую строчку этой матрицы перенесем в соответствующий столбец матрицы, стоящей на рисунке рядом. Вторая матрица – это транспонированная матрица матрицы М.
К середине XIX в. матрицы стали самостоятельными объектами математических исследований. К этому времени были сформулированы правила сложения и умножения матриц. Основную роль в их разработке сыграли работы Гамильтона, Кэли и Сильвестра (J.J.Sylvester, 1814–1897). Современное обозначение матрицы предложил Кэли в 1841 году. Исследования Вейерштрасса (K.Th.W.Weierstrass, 1815–1897) и Фробениуса (F.G.L. Frobenius, 1849–1917) далеко продвинули теорию матриц, обогатив ее новым содержанием.
Но существует ещё особая разновидность матриц, называемая магическим квадратом. Магический квадрат - квадратная таблица из целых чисел, в которой суммычисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.
Магический квадрат – древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы и эти знаки известны под названием лошу и равносильны магическому квадрату. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А.Дюрера изображенный на его знаменитой гравюре Меланхолия 1. Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.
В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления.
Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де лаЛубера. Рассмотрим этот метод на примере квадрата 5-го порядка. Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.
Где ещё применяются матрицы?
Таблица умножения - это произведение матриц (1,2,3,4,5,6,7,8,9)Т ×(1,2,3,4,5,6,7,8,9). В физике и других прикладных науках матрицы – являются средством записи данных и их преобразования. В программировании – в написании программ. Они еще называются массивами. Широко применение и в технике. Например, любая картинка на экране – это двумерная матрица, элементами которой являются цвета точек.
В психологии понимание термина сходно с данным термином в математике, но взамен математических объектов подразумеваются некие "психологические объекты" – например, тесты.
Кроме того, матрицы имеет широкое применение в экономике, биологии, химии и даже в маркетинге.
Также авторы нашли абстрактную модель – теорию бракосочетаний в первобытном обществе, где с помощью матриц были показаны разрешенные варианты браков для представителей и даже потомков того или иного племени, что явилось свидетельством разнопланового применения матриц.
Теперь подробнее остановимся на некоторых областях применения матриц.
Рассмотрим теорию бракосочетаний, о которой уже упоминалось.
В некоторых первобытных обществах существуют строгие правила относительно того, в каких случаях допустимы браки. Эти правила направлены на предотвращение браков между слишком близкими родственниками.
Эти правила допускают точную математическую формулировку в терминах «р¯ матриц». Одним из первых изложил эти правила в виде аксиом Андре Вейль.
Правила бракосочетания характеризуются следующими аксиомами:
- Аксиома 1: каждому члену общества приписывается определенный брачный тип.
- Аксиома 2: двум индивидуумам разрешается вступать в брак тогда и только тогда, когда они принадлежат к одному и тому же брачному типу.
- Аксиома 3: тип индивидуума определяется полом индивидуума и типом его родителей.
- Аксиома 4: два мальчика (или две девочки), родители которых принадлежат к разным типам, сами принадлежат к разным типам.
- Аксиома 5: правила, разрешающие или не разрешающие мужчине вступить в брак со своей родственницей, зависят только от вида родства. В частности, мужчине не разрешается жениться на своей сестре.
- Аксиома 6: для любых двух индивидуумов можно указать таких их потомков, которым разрешается вступать в брак.
Из аксиом следует, что нужно задать зависимость между типом родителей и типами сыновей и дочерей.
Данные схемы далее объединяются в большие матрицы, где условные обозначения преобразуются в числа. С помощью таких матриц удобно видеть кровное родство в нескольких поколениях.
Понятие матрицы и основанный на нем раздел математики – матричная алгебра – имеют чрезвычайно важное значение для экономистов. Объясняется это тем, что значительная часть математических моделей экономических объектов и процессов записывается в достаточно простой, а главное – компактной матричной форме.
С помощью матриц удобно записывать некоторые экономические зависимости.
Например, рассмотрим таблицу распределения ресурсов по отдельным отраслям экономики (усл. ед.):
В данной записи, например, матричный элемент = 5,3 показывает, сколько электроэнергии употребляет промышленность, а элемент α≡2= 2,1 - сколько трудовых ресурсов потребляет сельское хозяйство.
Далее рассмотрим применение матриц в психологии.
Прогрессивные матрицы Равена– тест на наглядное и в то же время абстрактное мышление по аналогии (тест интеллекта), разработанный англ. психологом Дж. Равеном (1938).
Каждая задача состоит из 2 частей: основного рисунка (какого–либо геометрического узора) с пробелом в правом нижнем углу и набора из 6 или 8 фрагментов, находящихся под основным рисунком. Из этих фрагментов требуется выбрать один, который, будучи поставленным на место пробела, точно подходил бы к рисунку в целом. Прогрессивные матрицы Равена разделяются на 5 серий по 12 матриц в каждой. Благодаря увеличению числа элементов матриц и усложнению принципов из взаимоотношений задачи постепенно усложняются как в пределах одной серии, так и при переходе от серии к серии. Имеется также облегченный вариант прогрессивных матриц Равена, предназначенный для исследования детей и взрослых с нарушениями психической деятельности.
Мы рассмотрели основные области применения матриц. Выяснилось, что данный термин употребляется не только в математике, но и в других науках, таких, как информатика, биология, химия, физика, психология, экономика и т. д. Кроме того, матрицы могут быть практически применимы, например, как это делали в первобытном обществе для определения разрешённых вариантов брака.
МАТРИЦА— (нем., Matrize, от лат. matrix матка). 1) в литейном производстве: медная форма для отливки букв, а также монет. 2) в типографском деле: бумажная форма для отливки стереотипа.
С помощью матриц можно решать системы уравнений, в них удобно представлять какие-либо данные.
Таким образом, мы пришли к выводу, что матрицы широко применялись и применяются до сих пор.
Литература
- Красс М.С., Чупрынов Б.П.; Математика, Питер, 2005.
- Солодовников А.С., Бабайцев В.А., Браилов А.В., Шандра И.Г.; Финансы и статистика, 2000.
- Кремер Н.Ш.; ЮНИТИ-ДАНА, Высшая математика для экономистов, 3-е издание, 2007.
- Венгер А.Л. - Психологические рисуночные тесты: Иллюстрированное руководство.
- Энциклопедический словарь юного математика. – М.: Педагогика, 1989.