Другие статьи

Цель нашей работы - изучение аминокислотного и минерального состава травы чертополоха поникшего
2010

Слово «этика» произошло от греческого «ethos», что в переводе означает обычай, нрав. Нравы и обычаи наших предков и составляли их нравственность, общепринятые нормы поведения.
2010

Артериальная гипертензия (АГ) является важнейшей медико-социальной проблемой. У 30% взрослого населения развитых стран мира определяется повышенный уровень артериального давления (АД) и у 12-15 % - наблюдается стойкая артериальная гипертензия
2010

Целью нашего исследования явилось определение эффективности применения препарата «Гинолакт» для лечения ВД у беременных.
2010

Целью нашего исследования явилось изучение эффективности и безопасности препарата лазолван 30мг у амбулаторных больных с ХОБЛ.
2010

Деформирующий остеоартроз (ДОА) в настоящее время является наиболее распространенным дегенеративно-дистрофическим заболеванием суставов, которым страдают не менее 20% населения земного шара.
2010

Целью работы явилась оценка анальгетической эффективности препарата Кетанов (кеторолак трометамин), у хирургических больных в послеоперационном периоде и возможности уменьшения использования наркотических анальгетиков.
2010

Для более объективного подтверждения мембранно-стабилизирующего влияния карбамезапина и ламиктала нами оценивались перекисная и механическая стойкости эритроцитов у больных эпилепсией
2010

Нами было проведено клинико-нейропсихологическое обследование 250 больных с ХИСФ (работающих в фосфорном производстве Каратау-Жамбылской биогеохимической провинции)
2010


C использованием разработанных алгоритмов и моделей был произведен анализ ситуации в системе здравоохранения биогеохимической провинции. Рассчитаны интегрированные показатели здоровья
2010

Специфические особенности Каратау-Жамбылской биогеохимической провинции связаны с производством фосфорных минеральных удобрений.
2010

Гигиеническое нормирование некоторых продуктов химической трансформации несимметричного диметилгидразина в почве

Введение. Большинство районов падения отделяющихся частей (РП ОЧ) первых ступеней ракет-носителей, стартующих с космодрома Байконур, расположены в Центральном Казахстане. Здесь стартуют PH на жидком ракетном горючем: несимметричном диметилгид- разине (НДМГ, 1,1-диметилгидразин, гептил). C этим видом горючего первого класса опасности связан риск для окружающей среды и здоровья человека. При приземлении ОЧ PH территория загрязняется гарантийными остатками токсичных компонентов ракетного топлива, которые сохраняются в топливных баках или на оборудовании отработавшей ступени.

Почва активно впитывает и связывает остатки топлива [1]. Этому способствуют особые физико-химические свойства НДМГ и продуктов его химической трансформации, позволяющие им длительное время сохраняться в почве, мигрировать из почвы в воду, растительность, трансформироваться в ещё более опасные канцерогенные вещества [1, 2]. Известно, что гидразины, включая НДМГ, легко вступают во взаимодействие с множеством реагентов различной природы. Все гидразины - сильные восстановители, но окисление их носит различный характер [3, 4].

В настоящее время идентифицировано значительное количество продуктов окислительной трансформации НДМГ, среди которых метилгидразин (МГ), триметилгидразин (ТМГ), нитрозодиметиламин (НДМА), N,N-, диметиламин (ДМА) и другие [4, 5]. Многие продукты трансформации НДМГ не имеют токсикологического паспорта, на них не разработаны гигиенические нормативы предельно допустимого содержания в почве [6].

Цель исследования: дать научное обоснование предельно допустимым концентрациям, распространенным в почвах районов падения отделяющихся частей ракет-носителей продуктов химической трансформации НДМГ.

При нормировании вредных веществ в почве в соответствии с руководством "Гигиеническое нормирование химических веществ в почве" [7] и методическими рекомендации по гигиеническому обоснованию ПДК химических веществ в почве [8] учитывались физико-химические свойства исследуемых соединений.

токсичность, поведение их в почве (стабильность), способность к миграции из почвы в воздух, воду и растения, влияние на общесанитарные показатели почвы.

Гидразин. При осуществлении ракетно-космической деятельности в районах падения отделяющихся частей ракет-носителей (РП ОЧ PH) отмечается точечное загрязнение почвы компонентами ракетного топлива. Наиболее токсичными из них являются несимметричный диметилгидразин (НДМГ - гептил) и продукты его химической трансформации. Один из первых продуктов трансформации НДМГ в почве - это гидразин, который является продуктом химического разложения гептила. Кроме того, гидразин используются в РКД в качестве топлива. Продукт быстро окисляется на воздухе [9].

Сравнительная характеристика физико-химических свойств гидразина и НДМГ, поведения в объектах окружающей среды, биологического действия, токсичности и клинической картины их воздействия на человека выявляет много общего.

Гидразин и его производные являются высокотоксичными и чрезвычайно опасными веществами, вызывают отравления при любом пути их поступления в организм, обладают выраженным ингаляционным и кожно-резорбтивным действием [6]. Достаточно сказать, что полусмертельная доза гидразина для крыс, мышей в 2-3 раза ниже, чем у несимметричного диметилгидразина. Если для мышей токсичность НДМГ по DL50 составляет 155÷13 мг/кг, а для крыс 202 мг/кг, то у гидразина этот показатель соответственно 59-80 и 60 мг/кг. Оба соединения отнесены к первому классу опасности. Кроме того, они обладают тератогенным, мутагенным и канцерогенным действием.

По гидразину и его производным разработаны и утверждены ПДК для:

  • воздуха рабочей зоны - 0,1 мг/м3,
  • атмосферного воздуха - 0,001 мг/м(1 класс опасности);
  • вод, используемых в культурно-бытовых и питьевых целях - 0,01 мл/л (2 класс опасности).

Лимитирующий признак вредности - санитарно-токсикологический. Для почвы норматива нет.

Нами теоретически и экспериментально доказана низкая степень устойчивости гидразина к химической деградации. Расчетный период полураспада гидразина в дозах 1,0- 10,0 мг/кг немногим больше 1,5 сут., полного - около 8,5 сут. Низкие концентрации гидразина в почве (от 0,1-1,0 и 10,0 мг/кг) практически полностью деградируют в течение 10 дней. Высокие концентрации (более 100 мг/кг) обладают большей устойчивостью к деградации и разрушаются в течение 60 дней.

При оценке влияния различных концентраций гидразина на биологическую активность почвы изучены изменение численности почвенных микроорганизмов и ферментативной активности почвы. Подсчет микроорганизмов произведен в пробах почвы, обработанных гидразином в концентрациях 0,1, 1,0, 10 мг/кг и 100 мг/кг через 1- 2- 3 - 6 - 12 ч, 10 - 20 - 30 дней после обработки. Контролем служила почва, не обработанная гидразином. Установлено, что влияние гидразина на исследованные образцы почв изменяет количественный и качественный состав почвенных микроорганизмов.

При воздействии гидразина в выше перечисленных дозах уже через 1 ч отмечалось снижение общего количества микроорганизмов (ОЧМ) в почве, в том числе усваивающих органические формы азота, соответственно в 22,7; 50; 50 и 1000 раз. Более значительное изменение (в 500-1000 раз) произошло в группе микроорганизмов, усваивающих неорганические формы азота. В 400 раз снизилось количество микроскопических грибов в почве, содержавшей 0,1 мг/кг гидразина. В почвах с большей концентрацией гидразина микроскопические грибы не обнаружены. Снижение численности микроорганизмов продолжалось в последующие сроки наблюдения вплоть до 30 дней наблюдения. Существенные изменения в количественном и качественном составе почвенных микроорганизмов отмечались уже при концентрации гидразина в почве, равной 0,1 мг/кг.

Самыми чувствительными к гидразину оказались микроскопические грибы. Численность споровых микроорганизмов в опытных почвах снизилась, однако через 20 дней после обработки повысилась, не достигнув исходного уровня.

Определение ферментативной активности почвенных образцов, загрязненных гидразином, производилось в аналогичных, как при подсчете ОЧМ, экспериментальных условиях. Отме-чело отсутствие изменения активности инвертазы в первый срок наблюдения при дозе 1 мг/кг. В дальнейшем наблюдалось снижение её активности (через 30 дней наблюдений в 2,6-3,4 раза в зависимости от концентрации гидразина).

Со стороны дегидрогеназы установлено, что под воздействием гидразина происходит увеличение активности фермента в 2,1-3,3 раза. При этом чем больше была его концентрация, тем выше проявлялась активность фермента. Основные изменения активности происходят до 20 дней наблюдений. Чутко реагирует на воздействие гидразина активность каталазы. При наличии в почве 0,1 мл/кг гидразина каталазная активность снижается через 10 дней в 1,5 раза, 100 мл/кг за тот же период - в 2,9 раза; через 20 дней - в 1,6-3,4 раза, через 30 дней - в 1,7-3,8 раза соответственно.

В результате исследования процессов десорбции гидразина из почвы в воздух, водный поток и транслокации в растения установлено следующее:

  • наиболее вероятное значение ПДК гидразина в почве, соответствующее ПДК при эмиссии гидразина в атмосферный воздух, равно 0,05 мг/кг;
  • миграция гидразина из почвы в воду, обеспечивающая безопасный уровень содержания гидразина химического соединения в воде, близка к 0,05 мг/кг;
  • одинаковый рост и развитие растений отмечены на контрольной почве и на почве, загрязненной гидразином в концентрациях 1,0 и 10,0 мг/кг. Отсутствие роста опытных растений (кукурузы, фасоли и салата) за исключением пшеницы и редиса отмечалось на почвах, загрязненных гидразином в дозе 100,0 мг/кг. Наиболее устойчивыми к химическому воздействию оказались пшеница и редис.

Хорошая растворимость гидразина в воде способствует идеальному поглощению вещества растениями. Выявление гидразина в растении отмечалось уже при концентрации вещества в почве, равной 1,0 мг/кг.

Влияние НДМГ на биохимические процессы в почве проявлялось снижением интенсивности дыхания почвы в виде ингибирования ферментов. Наименьшей концентрацией, при которой отмечались изменения, определена 1,0 мг/кг. Концентрация НДМГ, равная 100,0 мг/кг, угнетала самоочищающуюся способность почвы. Пороговая концентрация НДМГ в почве по общесанитарному показателю составила 1,0 мг/кг. В фитологических исследованиях обнаружено, что при содержании НДМГ в почве, равной 1,0 мг/кг, увеличиваются рост и развитие растений. Фитотоксическое действие НДМГ регистрировалось при концентрации вещества почве на уровне 10,0 мг/кг. Накопления НДМГ в растениях не обнаруживалось при концентрациях НДМГ в почве на уровне 0,1-10,0 мг/кг (ниже уровня чувствительности метода <0,01 мг/кг по ПДОК НДМА и НДЭА в зерновых культурах - 0,015 мг/кг). По водно-миграционному показателю пороговой определена концентрация 0,3 мг/кг. На основании полученных результатов (транслокации НДМГ из почвы в растения) авторы рекомендуют в качестве ПДК величину 0,1 мг/кг.

В нашем исследовании минимально действующими показателями, на которые можно ориентироваться в качестве ПДК гидразина в почве, являются миграционно-воздушный и миграционно-водный. В обоих случаях минимальной концентрацией гидразина в почве, при которой миграция вещества в воздух и водный поток соответствуют их ПДК в указанных объектах, является 0,05 мг/кг.

На основании интегральной оценки полученных экспериментальных данных, с учетом гигиенической значимости обнаруженных изменений, а также токсичности соединения, в качестве ПДК гидразина в почве рекомендуется величина 0,05 мг/кг по миграционно-воздушному и миграционно-водному показателям вредности. Данный уровень предельно допустимого содержания гидразина в почве коррелирует с токсичностью вещества (токсичность гидразина превышает токсичность НДМГ в 2 и более раз).

Нитрозодиметиламин и тетраметил- тетразен. НДМА и TMT по токсичности эти вещества соответствуют 1 и 3 классу опасности. Оценка стабильности веществ в почве производилась при искусственном её загрязнении водными растворами НДМА и TMT на уровне 10,50 и 100 ПДК по воде (ПДК НДМА для воды культурно-бытового и питьевого водопользования равна 0,01 мг/л, для TMT - 0,1 мг/л). Содержание веществ в почве определялось через 24, 48, 72 и 120 ч.

Основное разрушение НДМА и TMT в концентрации 10 ПДК происходит в первые часы исследования. Так, содержание НДМА в парах снизилось от исходной величины через 48 ч на 15,4 %, через 72 ч - на 30,8 % и через 120 ч - на 42,4 %. Такая же тенденция прослеживалась при оценке деградации веществ в других концентрациях.

Степень эмиссии НДМА с паром находилась в прямой зависимости от исходной концентрации вещества в растворе: чем выше концентрация, тем значительнее выделения паров НДМА и TMT. Полученные данные о поведении веществ в водных растворах в какой-то степени демонстрируют динамику и скорость деградации веществ в почве.

В то же время исследование низких концентраций затруднено в связи с отсутствием утвержденных методов индикации этих веществ в воздухе, либо по причине их малой чувствительности. Так, при содержании НДМГ в атмосферном воздухе, близком к ПДК (0,001 мг/м3), хроматографическое определение вещества возможно лишь на уровне 0,5 ПДК [9]. Для НДМА и TMT ситуация ещё более жесткая.

Оценка влияния разных концентраций НДМА и TMT на всхожесть и рост растений разных семейств в концентрациях 10 и 50 ПДК для питьевой воды, показала в первые недели хорошее развитие стеблей и всхожесть, но уже на 7-й неделе эксперимента растения отставали в своем развитии от контрольных опытов. Наиболее устойчивым растением к воздействию НДМА оказалась фасоль, а к воздействию TMT - пшеница.

При отсутствии гигиенического норматива на предельно допустимое остаточное количество (ПДОК) исследуемых соединений в растениях количественная оценка транслокации веществ из почвы в растения не производилась.

Обработка почвы производными НДМГ повлияла на общее количество микрофлоры. При наличии НДМА в растворе, превышающем ПДК в 50 раз, численность микробов уменьшалась в 2 раза. При разведении НДМГ в IO3 и IO5 степени ситуация оставалась стабильной. При разведении IO3 колонии, образующие единицы, были незначительно равны, и даже несколько больше в конце опыта, а при разведении IO5 - меньше в 3 раза.

Изучение миграции НДМА и TMT из почвы в воду проводилось на МПЭ массой 50 кг НДМА и TMT вносились в МПЭ количестве 0,09 мг; 0,5 мг и 5,0 мг соответственно. Затем через МПЭ пропускалась водопроводная вода в количестве 3 л. После завершения процесса фильтрации содержание в почве НДМА было на уровне 0,0076, а содержание TMT - 0,069 мг/кг. Это означает, что в качестве ПДК по миграционно-водному показателю можно рекомендовать нагрузку НДМА на почву, равную 0,01 мг/кг, а для TMT - 0,1 мг/кг, при которых не превышается уровень ПДК для воды, используемой в хозяйственно-питьевых целях.

Диметиламин. ДМА - типичный представитель ряда низших алифатических аминов, является высокотоксичным соединением второго класса опасности. Опыты проводились с нагрузкой ДМА на почву в количестве 33,0-3,3 и 0,3 мг/кг.

При концентрации ДМА в МПЭ, равной 33,0 мг/кг, уровень содержания вещества в почве снижается через 3 мес. на 30,75 %, при 3,3 мг/кг - через 2 мес. на 58,8 % и спустя 3 мес. - на 100 %. В третьем случае - через 2 мес. - на 10,9 % и через 3 мес. - на 100 %. Более высокая химическая нагрузка на почву сопровождалась более длительным сроком деградации вещества в почве.

Анализ продуктов деградации ДМА, осуществляемый методом хроматомасс-спектро- метрии на приборе "Agilent-7890A", позволил по истечении 15 сут. выявить в водной вытяжке НДМА, TMT, ДМФА, МТ, ДМТ, ДМФГА. C увеличением экспозиции при дозах 10,0 и İ‚Омг/л количество продуктов трансформации ДМА в МПЭ нарастало.

При оценке влияния ДМА на изменение общесанитарных показателей и биологической активности почвы установлено следующее. Под действием ДМА происходит уменьшение количества микроорганизмов. Общее число микроорганизмов на 10-й день загрязнения ДМА снизилось на порядок. Через 30 дней количество их повысилось наполовину по сравнению с 10-м днем обработки, но не достигло исходного уровня, а через 90 дней число их увеличилось до l,0xlO7 КОЕ/г, но не достигло исходного уровня.

На 10-й день загрязнения ДМА грибы не обнаруживались. На 30-й день появились единичные колонии грибов, к 90-му дню - 250 КОЕ/г. Содержание споровых микроорганизмов под влиянием ДМА снизилось примерно на 50 %, а к 30-му дню количество споровых микроорганизмов повысилось на 50 % по сравнению с 10-м днем обработки. К 90-му дню их количество повысилось до 250, но не достигло исходного уровня.

Инвертазная активность при внесении ДМА в почву в дозе 33,0 мг/кг снизилась на 10-е сут. по сравнению с контролем почти в 2 раза (с 11,3 до 5,5 мг/мл), через 30 сут. снижение оставалось на том же уровне, но через 90 сут. увеличилось до 9,46 мг/мл.

На 10-й день обработки ДМА активность дегидрогеназы сходит на нет. К 30-му и 90-му дням происходит неполное восстановление данных ферментов.

Каталазная активность почвенных образцов, загрязненных ДМА в концентрации 33,0 мг/ кг, на 10-й день после обработки почвы ДМА снижалась на 34,3 %, затем несколько восстанавливалась к 30-му дню (до 0,40 мг/мл) и сохраняла этот уровень до 90-го дня наблюдения.

При оценке влияния ДМА на рост и развитие растений в качестве тест-претендентов использовались кукуруза, фасоль, редис, салат и овес, срок вегетации которых достаточен для формирования растительной массы (надземной и подземной) - от 4 до 7 недель.

Фитотоксичное действие оценивалось по всхожести семян (в абсолютных цифрах по отношению к аналогичному показателю контрольной пробы) и угнетению роста стеблей (определялось по абсолютным показателям длины стеблей растений, проросших на субстрате, содержащем ДМА). Все испытуемые растения начали активно расти, давали пышную растительность (фасоль, кукуруза, салат, редис и овес). Тем растениям, которым предварительно в почву вводили ДМА в различных концентрациях - 33,0 и 3,3 мг/кг почвы - первоначально несколько увеличили активность в своем развитии, но на 4-й неделе процесс развития у части испытуемых образцов остановился.

Результаты исследования процессов миграции диметиламина из почвы в воздух и воду (грунтовый поток) показали, что при концентрации диметиламина в почве в количестве соответственно 0,5 и 0,2 мг/кг достигается гигиенический норматив для атмосферного воздуха и для воды хозяйственно-питьевого назначения. При содержании ДМА в почве 0,5 мг/кг обеспечивается миграция вещества в атмосферный воздух, близкая к максимально разовой предельно допустимой концентрации ДМА в атмосферном воздухе 0,005 мг/м3. При содержании ДМА в почве 0,2 мг/кг обеспечивается миграция вещества в воду на уровне ПДК ДМА для воды хозяйственно-питьевого назначения (0,1 мг/л).

Таким образом, в качестве предельно допустимой концентрации ДМА в почве была рекомендована величина 0,2 мг/кг.

Дııметııлформамııд. По своим физико-химическим и токсикологическим свойствам ДМФА относится к 2-му классу опасности. В почве диметилформамид является довольно стабильным соединением. Разрушение его в почве не наблюдается даже по истечению 90 сут. эксперимента. Длительному сохранению ДМФА в почве способствуют хорошая растворимость вещества в воде и возможность образования комплексов.

Из почвы ДМФА убывает:

  • на 10-е сут. на 7,2 % от исходного значения;
  • на 30-е сут. - на 7,95 %;
  • на 50-е сут. - на 21,3 %;:
  • на 90-е сут. - на 60 %.

Изменение общесанитарных показателей почвы при загрязнении её ДМФА в различных концентрациях (в % к контролю) в первые дни опыта сопровождалось угнетением всех показателей санитарного состояния почвы (общего числа микроорганизмов, ферментов), за исключением микроскопических грибов. Каталазная и инвертазная активность почвы при дозе ДМФА 100 мг/кг резко снижалась; но к 30-му дню - восстанавливалась. Минимальная действующая доза ДМФА на показатели санитарного состояния почвы должна быть ниже 100 мг/кг.

Опыты по изучению влияния диметилфор- мамида на рост и развитие растений показали, что наибольшей устойчивостью к воздействию ДМФА обладают злаковые культуры (пшеница). Содержание в почве ДМФА на уровне 5 ПДК для питьевой воды (50 мг/кг почвы) легче переносилось растениями.

Загрязнение диметилформамидом почв сопровождалось угнетением биологических её

АГИУВ свойств: снижение общего числа микробов (за исключением микроскопических грибов) и активности дыхательных ферментов почвы (дегидрогеназы, каталазы, инвертазы). Доза ДМФА, равная 100 мг/кг, вызывала менее значимые изменения биологических свойств почвы.

При исследовании миграции ДМФА из загрязненной почвы в воду установлено, что химическая нагрузка на почву ДМФА, равная в 1 мг/кг, приводила к появлению химического соединения в водном потоке на уровне 10 мг/л, что соответствует ПДК для воды, используемой для хозяйственно-питьевых нужд.

При исследовании миграции ДМФА из почвы в воздух установлено, что из загрязненной почвы, содержащей ДМФА в количестве 1,12 мг/кг, достигается ПДК для атмосферного воздуха на уровне 0,03 мг/м3.

На растения ДМФА в меньшей степени оказывало влияние содержание вещества в воде на уровне 5 ПДК для питьевой воды (соответственно 50 мг/кг почвы).

Наименьшим показателем вредности является величина загрязнения почвы в дозе 1 мг/кг, которая рекомендуется в качестве ПДК.

Метилтриазол (1-метил-1,2,4-триазол). В чистом виде 1-метил-1,2,4-триазол обладает меньшей токсичностью, чем НДМГ (3 класс опасности).

В экспериментальных условиях изучена стабильность MT в почве. Теоретически доказана повышенная устойчивость метилтриазола к химической деградации по сравнению с другими продуктами химической трансформации НДМГ. Выдерживание в течение 60 сут. MT без доступа воздуха в МПЭ в дозе 10,2 мг/кг (образец № 1) сопровождалось снижением его концентрации на 35,3 %, при нагрузке в 116,7 мг/кг (образец № 2) - на 39,7 %, а при 1094,7 мг/кг (образец № 3) - на 33,6 %. Математическим расчетом с применением метода наименьших квадратов установлено, что период полной деструкции MT (Т99) может составлять при нагрузке 10 мг/кг 657,1 сут., 100 мг/кг - 597,4 сут. и при 1000 мг/кг — 666,6 сут. Период полураспада приближается к 100 дням.

Экспериментальные исследования по оценке влияния на общую микрофлору почвы, включая почвенные грибы, выявили снижение роста микробов, использующих органические формы азота (рост на МПА), на 10-й день после обработки MT во всех образцах почвы на 28,1- 30,6 и 61,2 % соответственно.

Количество микроскопических грибов через 10 дней после обработки снизилось во всех образцах почв (№ 1 - на 30 %, № 2 - на 50,0 % и № 3 - на 92,0 %). Через 30 дней после обработки в исследуемых образцах почв микроскопические грибы не обнаружены, а на 60-й день они вновь появились, хотя и не достигли уровня в контроле. Пороговая концентрация MT в почве по воздействию на жизнеспособность микробов и актиномицетов может быть принята на уровне 10,0 мг/кг.

Инвертазная активность в почвенных образцах № 1 и № 2 через 10 дней после обработки упала по сравнению с контролем на 47,6 и 44.7 % соответственно. Через 60 дней после обработки активность инвертазы достигла контроля во втором и третьем вариантах.

Установлено наибольшее снижение активности дегидрогеназы во все сроки и во всех образцах более чем на 90 %. Такая же картина прослеживалась в отношении активности каталазы. Таким образом, влияние MT на биохимические процессы в почве проявлялось снижением интенсивности дыхания почвы. Наименьшая концентрация МТ, при которой обнаружены изменения биохимической активности почвы, составляет 10,0 мг/кг.

Проращивание овса на почве, загрязненной MT в дозе 30 мг/кг, не оказывало существенного влияния на развитие злаковой культуры. Кукуруза оказалась менее устойчивой к прорастанию на загрязненной MT почве в дозе 300 и 3000 мг/кг. Отсутствие прорастания семян редиса отмечалось в загрязненной MT почве при дозе, равной 3000 мг/кг.

Таким образом, минимальная действующая концентрация MT на рост овса, кукурузы и редиса приближалась к 30 мг/кг.

Моделирование процессов миграции MT из почвы в воздушную среду не производилось в связи с тем, что MT является нелетучием соединением (температура кипения - 175- 177 °C, плотность - 1,465 г/см3).

При изучении процессов миграции MT в грунтовые воды установлено, что допустимый уровень MT в почве при прогнозировании опасности загрязнения грунтового потока достигает до 10 мг/кг - концентрация MT в фильтрате соответствует ПДК в питьевой воде (1,0 мг/л).

Предложенные ПДК прошли необходимую экспертизу и находятся в стадии утверждения.

 

ЛИТЕРАТУРА

  1. Касимов Н.С., Гребенюк В.Б., Королева Т.В., Проскурякова Ю.В. Поведение компонентов ракетного топлива в почвах, водах и растениях // Почвоведение. - 1994. - № 9. - С. 110-120.
  2. Экологические проблемы и риски воздействий ракетно-космической техники на окружающую природную среду: справочное пособие ⁄ под ред. В.В. Адушкина, С.И. Козлова, А.В. Петрова. - M.: "Анкил", 2000. - 640 с.
  3. Иоффе Б.В., Кузнецов М.Л., Потехин А.А. Химия органических производных гидразина. - Л.: "Химия", 1979. - 224 с.
  4. Жубатов Ж. Обоснование и разработка концептуальных основ экологического нормирования ракетно-космической деятельности космодрома "Байконур": автореф. докт. техн. наук. - Алматы, 2010. - 58 с.
  5. Смоленков А.Д. Новые подходы к хроматографическому определению гидразинов и их производных в объектах окружающей среды: автореф, док.хим. наук: 02.00.02. - M., 2014. - 46 с.
  6. Справочник по токсикологии и гигиеническим нормативам (ПДК) потенциально опасных химических веществ Z под ред. Кушневой В.С., Горшковой Р.Б. Ин-т биофизики и его филиалов. - M.: ИздАТ, 1999. - 272 с.
  7. Гончарук Е.И., Сидоренко Г.И Гигиеническое нормирование химических веществ в почве. - M.: "Медицина". - 1986. - 320 с.
  8. Методические рекомендации по гигиеническому обоснованию ПДК химических веществ в почве (№ 2609-82). - M., 1982. - 32 с.
  9. Кондратьев А.Д., Шпигун О.А., Смоленков А.Д. Использование хроматографии при экологическом сопровождении ракетно-космической деятельности //Аналитическая хроматография и капиллярный электрофорез: матер. Bcepoc. конф. - Краснодар, 2010. - С. 91.

Разделы знаний

Архитектура

Научные статьи по Архитектуре

Биология

Научные статьи по биологии 

Военное дело

Научные статьи по военному делу

Востоковедение

Научные статьи по востоковедению

География

Научные статьи по географии

Журналистика

Научные статьи по журналистике

Инженерное дело

Научные статьи по инженерному делу

Информатика

Научные статьи по информатике

История

Научные статьи по истории, историографии, источниковедению, международным отношениям и пр.

Культурология

Научные статьи по культурологии

Литература

Литература. Литературоведение. Анализ произведений русской, казахской и зарубежной литературы. В данном разделе вы можете найти анализ рассказов Мухтара Ауэзова, описание творческой деятельности Уильяма Шекспира, анализ взглядов исследователей детского фольклора.  

Математика

Научные статьи о математике

Медицина

Научные статьи о медицине Казахстана

Международные отношения

Научные статьи посвященные международным отношениям

Педагогика

Научные статьи по педагогике, воспитанию, образованию

Политика

Научные статьи посвященные политике

Политология

Научные статьи по дисциплине Политология опубликованные в Казахстанских научных журналах

Психология

В разделе "Психология" вы найдете публикации, статьи и доклады по научной и практической психологии, опубликованные в научных журналах и сборниках статей Казахстана. В своих работах авторы делают обзоры теорий различных психологических направлений и школ, описывают результаты исследований, приводят примеры методик и техник диагностики, а также дают свои рекомендации в различных вопросах психологии человека. Этот раздел подойдет для тех, кто интересуется последними исследованиями в области научной психологии. Здесь вы найдете материалы по психологии личности, психологии разивития, социальной и возрастной психологии и другим отраслям психологии.  

Религиоведение

Научные статьи по дисциплине Религиоведение опубликованные в Казахстанских научных журналах

Сельское хозяйство

Научные статьи по дисциплине Сельское хозяйство опубликованные в Казахстанских научных журналах

Социология

Научные статьи по дисциплине Социология опубликованные в Казахстанских научных журналах

Технические науки

Научные статьи по техническим наукам опубликованные в Казахстанских научных журналах

Физика

Научные статьи по дисциплине Физика опубликованные в Казахстанских научных журналах

Физическая культура

Научные статьи по дисциплине Физическая культура опубликованные в Казахстанских научных журналах

Филология

Научные статьи по дисциплине Филология опубликованные в Казахстанских научных журналах

Философия

Научные статьи по дисциплине Философия опубликованные в Казахстанских научных журналах

Химия

Научные статьи по дисциплине Химия опубликованные в Казахстанских научных журналах

Экология

Данный раздел посвящен экологии человека. Здесь вы найдете статьи и доклады об экологических проблемах в Казахстане, охране природы и защите окружающей среды, опубликованные в научных журналах и сборниках статей Казахстана. Авторы рассматривают такие вопросы экологии, как последствия испытаний на Чернобыльском и Семипалатинском полигонах, "зеленая экономика", экологическая безопасность продуктов питания, питьевая вода и природные ресурсы Казахстана. Раздел будет полезен тем, кто интересуется современным состоянием экологии Казахстана, а также последними разработками ученых в данном направлении науки.  

Экономика

Научные статьи по экономике, менеджменту, маркетингу, бухгалтерскому учету, аудиту, оценке недвижимости и пр.

Этнология

Научные статьи по Этнологии опубликованные в Казахстане

Юриспруденция

Раздел посвящен государству и праву, юридической науке, современным проблемам международного права, обзору действующих законов Республики Казахстан Здесь опубликованы статьи из научных журналов и сборников по следующим темам: международное право, государственное право, уголовное право, гражданское право, а также основные тенденции развития национальной правовой системы.